Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Using Information Technology to Tackle the Root of World Hungar

Published: Monday, August 12, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Scientists are studying what the rest of us don't see--the work going on underneath the ground that enables the growth of healthier crops.

Jonathan Lynch is a professor of plant nutrition in the Penn State College of Agricultural Sciences. His research focuses on plant root architecture, and how the study of plant roots can increase crop yields and improve global food security. Lynch conducts research on five continents, where he uses computer simulations to study root characteristics.

mproving soil resource acquisition helps to feed the world, and this research has been greatly aided by computer technology.

Traditionally, the key to improving crop yields has been to increase soil inputs, such as fertilizer and irrigation, but in Africa, farmers cannot afford fertilizer and must work with poor soil.

Given these circumstances, Lynch believes the roots themselves must be improved.

“All plants need nutrients,” he explained. “What we’re dealing with, really, is acquisition efficiency—getting those nutrients out of the soil better. What we need, instead of plants that respond well to fertilizers, are plants that can do well in low-input, low-fertility environments.”

The right kind of root

The characteristics and shapes of roots play a crucial role in the acquisition of water and essential nutrients, such as phosphorus and nitrogen. In order to study these important traits, Lynch and his colleagues use computer modeling to simulate the roots of two of the world’s most important staple crops: beans and corn. Computer modeling helps to pinpoint critical factors that are difficult to measure on real roots growing in soil.

“To just say that you want more roots—that’s the wrong answer. What you really want is a root system that’s doing just the right thing at the right time in the right place—but what is that exactly?”—Jonathan Lynch.

The answer can be found through computer simulations, using Penn State-developed programs like SimRoot, a simulation created entirely by students and postdoctoral researchers in the Lynch lab, with help and guidance from IT staff. Studies conducted using SimRoot have examined the effectiveness of shallow versus deep roots, and the importance of root angles, root hairs, root hair density, and root hair length.

Many of the discoveries made using computer simulations can be applied to the practical aspects of farming and can improve crop yields. For example, shallow roots fare better in topsoil, and longer root hairs absorb more phosphorus. When growing corn, deep roots are best, because essential nutrients like nitrogen are easily washed out of the soil.

In his interactions with farmers around the globe, Lynch advocates a simple approach: Study the visuals of roots, rather than their genetic makeup.

“In Africa, breeders may not have sophisticated tools to look at molecular markers,” Lynch said. “If they can use a shovel, dig up a root system, and notice it has certain traits, that’s something they can use. It’s what we call ‘shovelomics.’ And that may be more important than genomics in promoting food security in poor nations.”

Through collaboration with plant breeders, Lynch’s work has led to the creation of new genotypes of beans and soybeans, and has resulted in improved crop yield in the low-phosphorus soils of Africa, Asia, and Latin America. Other countries stand to benefit from Lynch’s work as well, with projects under way with colleagues in Mozambique, Malawi, South Africa, China, Ecuador, Honduras, Nicaragua. and Colombia.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Penn State Researchers Part of Award-Winning Africa Research Team
College of Agricultural Sciences scientists are part of a research team that recently won 2013 Africa Collaboration Challenge Prize.
Wednesday, May 29, 2013
Number of Foodborne Illness Cases Largely Unchanged in U.S.
Recently released reports about the frequency of foodborne illness show that the risks have not changed much in recent years, according to an expert in Penn State's College of Agricultural Sciences.
Tuesday, May 07, 2013
Changing Cellulose-Forming Process May Tap Plants' Biofuel Potential
Changing the way a plant forms cellulose may lead to more efficient, less expensive biofuel production, according to Penn State engineers.
Monday, April 29, 2013
Cattle Expert: New Livestock Identification Regulations Not Burdensome
The new livestock identification program recently launched by the federal government should not place a significant burden on producers in Pennsylvania or the East.
Monday, April 29, 2013
Latest Food Scare Avoided with Proper Handling and Cooking
Seems like every month there is a new food scare that makes the national news. Most recently, it was antibiotic-resistant bacterial pathogens found in pork.
Thursday, December 13, 2012
Scientific News
New Organic Plant Breeding Effort to Produce Novel Varieties and Train New Breeders
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos