Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

US and UK Scientists Collaborate to Design Crops of the Future

Published: Thursday, August 22, 2013
Last Updated: Thursday, August 22, 2013
Bookmark and Share
Three Ideas Lab projects and a fourth NSF-sponsored project aim to transform future farming while reducing pollution and energy consumption.

Four teams of researchers in the United States and the United Kingdom recently were awarded more than $12 million to begin a program of novel research to revolutionize current farming methods by giving crops the ability to thrive without using costly, polluting artificial fertilizers.

The four highly innovative projects encompass: an effort to use synthetic biology to create new useful components for plants; a global search for a mysterious lost bacterium with significant unique functions; work to engineer beneficial relationships between plants and microbes; and an effort to mimic ingenious strategies employed by blue-green algae.

The U.S. National Science Foundation (NSF) and U.K.'s Biotechnology and Biological Sciences Research Council (BBSRC) made the awards following an 'Ideas Lab' that focused on new approaches for dealing with the challenges of nitrogen in the growing global food demand. NSF solely awarded one of the four projects.

Plants need nitrogen to grow, and by 2015, more than 190.4 million tons of it will be needed to supply the world's food. Most farms rely on great quantities of industrially-produced, nitrogen-rich fertilizer to ensure crop yields, but doing so comes with trade-offs.

Artificial fertilizers are costly and are produced using vast amounts of fossil fuel. They also generate environmental problems from degrading soil to runoff into rivers where they pollute fresh waters and coastal zones. As a result, crops need an alternative from which they can gather needed nitrogen.

According to researchers, there is plenty of environmentally-safe nitrogen in the atmosphere, but it is unusable. Atmospheric nitrogen needs to be 'fixed', they say, meaning it needs to be converted into a form that plants can use.

With funding from both NSF and BBSRC, these projects offer technological stepping stones to do just that--reduce the need for artificial fertilizers by enabling crops to fix their own nitrogen.

"The reliance of artificial nitrogen fertilizers for food crop production and their damaging environmental effects are in many ways underestimated," said John Wingfield, NSF's assistant director for Biological Sciences. "Fortunately, there are scientists paying attention to how these artificial fertilizers can be replaced by abundant atmospheric nitrogen. NSF's investment in Ideas Lab nitrogen projects provides a unique opportunity to engage cross-disciplinary scientists and engineers to generate novel and innovative approaches to creatively address a worldwide problem."

"The outputs of the Ideas Lab have offered fresh ideas and fresh approaches to the challenge of feeding a growing population in a sustainable way," said BBSRC Chief Executive Douglas Kell. "By bringing together world-leading researchers from the U.S. and U.K., we are rethinking current farming practices. Thanks to this exciting research, farms of the future could one day produce crops that do not rely on costly and polluting man-made fertilizers."

The four Ideas Lab projects are:

Nitroplast: A Light-Driven, Synthetic Nitrogen-Fixing Organelle--$1.89M

Devaki Bhaya, Carnegie Institution of Washington; John H. Golbeck, Penn State University; Christopher A. Voigt, Massachusetts Institute of Technology; Susan Rosser, University of Glasgow; Bill Rutherford, Imperial College London

This project aims to design and build a synthetic biological module that could work inside a cell to perform the function of "fixing" nitrogen for plants.

Some plant-like bacteria (cyanobacteria) are able to fix nitrogen using solar energy via specialized cellular machinery. The scientists hope to re-engineer this machinery so that it can be transferred into a new host bacterial chassis. This will require identifying and transferring the genes responsible for nitrogen fixation as well as alterations to cellular processes.

"Nature has given us a toolbox of functional units that we can use to build complex biological modules," said Devaki Bhaya of Carnegie Institution of Washington. "The goal is to use these to build a novel synthetic nitrogen fixing unit that can be transferred to other hosts and ultimately give plants new functionality. It could mean the crops of the future can make use of the nitrogen around us without needing fertilizers."

Oxygen-Tolerant Nitrogenase--$1.87M

Maren Friesen, Michigan State University; Bill Rutherford and Martin Buck, Imperial College London;

Unique bacteria, discovered in a German charcoal pit in the 90s, could hold the key to enabling plants to fix their own nitrogen. However, there is only one recorded sighting of this bacterium, which grows in toxic environments. Now, scientists will scour the fiery corners of the globe, searching Hawaiian volcanoes, American coal seam fires and German fire pits for the elusive heat-lover, in a bid to recover its lost potential.

"Rediscovering this bacterium, or ones with similar properties, would be a game-changer," said Maren Friesen lead investigator at Michigan State University. "It contains an unusual system for fixing nitrogen in the presence of oxygen, which would enable us to leap past pervasive stumbling blocks in this field. The enzyme it contains could be a missing piece in the puzzle for creating nitrogen-fixing plants."

In nature, the reaction that fixes atmospheric nitrogen into a biologically usable form requires an enzyme called nitrogenase. The enzyme is inhibited by oxygen, rendering it useless in the normal oxygenated cells of plants. While some organisms can fix nitrogen, they have to have special adaptations to limit oxygen. However, the lost bacterium has a unique nitrogenase that could fix nitrogen in oxygen-rich environments, eliminating the requirement for oxygen limitation. This could be extremely useful in the development of nitrogen-fixing plants.

Friesen and colleagues hope to find the original bacterial strain, as well as new oxygen-tolerant, nitrogen-fixing strains, in these seemingly inhospitable environments. The team will then study the genetics and biochemistry of these strains with an eye towards transferring oxygen-tolerant nitrogenase into plants.

Engineering Synthetic Symbiosis Between Plant and Bacteria to Deliver Nitrogen to Crops--$5.09M

John W. Peters, Montana State University; Jean-Michel Ane, University of Wisconsin Madison; Christopher Voigt, Massachusetts Institute of Technology; Michael Udvardi, Samuel Roberts Nobel Foundation; Philip Poole and Giles Oldroyd, John Innes Centre

Some plants have developed close symbiotic relationships with bacteria. These bacteria are held in root nodules and convert the nitrogen gas found abundantly in the air into nitrogen fertilizer that plants need for growth. Researchers hope to transfer this nitrogen-fixing process into important crops to deliver nitrogen without using artificial fertilizers.

The researchers will genetically alter a nitrogen-fixing bacteria and a simple grass species, which is similar to more complex cereals such as maize, to ensure a lock and key interaction between plant and microbe, while maximizing nitrogen fixation by the bacteria and the amount of usable nitrogen delivered to the plant.

"This research could pave the way for a 'Green Revolution' that will increase crop yields for resource-poor farmers and decrease the use and environmental impact of industrial fertilizers by wealthier farmers," said Philip Poole from England's John Innes Centre, which conducts research and training in plant and microbial science.

The project's nitrogen-fixing bacteria will be genetically tuned to respond to plant signals and nutritional needs to control the production of nitrogen fertilizer for the plant.

Once the researchers have perfected the technique, they hope to develop effective interactions between maize and nitrogen-fixing bacteria.

Designing Nitrogen Fixing Ability in Oxygenic Photosynthetic Cells--$3.87M

Himadri B. Pakrasi, Tae Seok Moon and Fuzhong Zhang, Washington University in St. Louis; Costas D. Maranas, Penn State University;

The goal of this NSF-sponsored project is to develop the design principles to establish nitrogen fixing ability in an oxygenic photosynthetic organism, unicellular cyanobacterium. Cyanobacteria are blue-green algae of which certain strains are capable of gathering and converting atmospheric nitrogen.

Researchers led by Washington University in St. Louis biologist Himadri B. Pakrasi will attempt to use the ingenious strategies employed by the cyanobacterium to define the minimum requirements for nitrogen fixation to occur in photosynthetic cells, including those in crop plants. The researchers will also attempt to engineer plant cells with the ability to fix atmospheric nitrogen into usable compounds.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

One Day, we May Fill the Tank with Fungi Fuel!
Plant fungi and bacteria called "endophytes" fueling breakthroughs in energy, medicine and more.
Wednesday, September 25, 2013
Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!