Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

One Day, we May Fill the Tank with Fungi Fuel!

Published: Wednesday, September 25, 2013
Last Updated: Wednesday, September 25, 2013
Bookmark and Share
Plant fungi and bacteria called "endophytes" fueling breakthroughs in energy, medicine and more.

Over his 50-year career, Montana State University plant pathologist Gary Strobel has traveled to all seven continents to collect samples of endophytes from remote and sometimes dangerous places. Endophytes are microorganisms--bacteria and fungi--that live within the living tissue of a plant.

With support from the National Science Foundation (NSF), Strobel, engineer Brent Peyton and their team at Montana State University have discovered that endophytes have the ability to make diesel-like fuel. One hydrocarbon-producing fungus comes from the Ulmo tree of Patagonia. Another is a citrus fungus from Florida. And, amazingly, it takes the team just a few weeks to create the fuel.

Strobel says the long-term goal is to improve the process of using microbes that degrade plant material, especially agricultural waste, to make economically feasible quantities of hydrocarbons. He adds fungi and bacteria hold great potential for breakthroughs in medicine, plastics and green chemistry as well.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

US and UK Scientists Collaborate to Design Crops of the Future
Three Ideas Lab projects and a fourth NSF-sponsored project aim to transform future farming while reducing pollution and energy consumption.
Thursday, August 22, 2013
Scientific News
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos