Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Ecology and Evolution of Infectious Diseases Grants Announced

Published: Thursday, October 03, 2013
Last Updated: Thursday, October 03, 2013
Bookmark and Share
A collaboration between BBSRC, NSF, NIH and NIFA has awarded more than $16M in Ecology and Evolution of Infectious Diseases (EEID) grants.

The EEID program supports research to understand the ecological and biological mechanisms behind human-induced environmental changes and the emergence and transmission of infectious diseases.

Professor Douglas Kell, BBSRC chief executive, said: "Tackling the infectious diseases that threaten the health of humans and livestock is a critical need, especially in the face of a growing global human population expected to reach nine billion by 2050.

"We face many challenges related to food security and health. These EEID projects will combine international expertise to help us find solutions."

Projects funded through the EEID program allow scientists to study how large-scale environmental events - such as habitat destruction, invasions of non-native species and pollution - alter the risks of emergence of viral, parasitic and bacterial diseases in humans and other animals.

This year's EEID awardees will conduct research on subjects including honeybees and their parasites, the evolution and spread of virulent infectious diseases, the macroecology of infectious disease, and the persistence of foot-and-mouth disease.

Sam Scheiner, NSF EEID programme director, said: "Our understanding of the ecology and evolution of pathogens comes from knitting together information from many different sources.

"They include diseases of humans, frogs, honeybees and plants. Each system provides a different piece of the puzzle that helps us protect human health, the health of our agricultural systems and that of our natural world."

Researchers supported by the EEID programme are advancing basic theory related to infectious diseases, and improving understanding of how pathogens spread through populations at a time of increasing environmental change.

The benefits of research on the ecology and evolution of infectious diseases include development of theories about how diseases are transmitted, improved understanding of unintended health effects of development projects, increased capacity to forecast disease outbreaks, and knowledge of how infectious diseases emerge and re-emerge.

Christine Jessup, EEID program director at NIH's Fogarty Center, said: "This year's EEID projects bring together multiple scientific fields to address how human and natural processes influence infectious diseases in humans and other animals, including diseases that affect wildlife and agriculture, as well as those of significant public health concern in the developing world.

"Findings from EEID-supported research are improving public health interventions and management decisions."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
A Synthetic Biology Approach to Improve Photosynthesis
Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis.
Friday, May 16, 2014
Green Vaccination: Boosting Plant Immunity Without Side Effects
A team of international researchers has uncovered a mechanism by which plants are able to better defend themselves against disease causing pathogens.
Tuesday, May 06, 2014
Rothamsted Research Granted Permission for new GM Field Trial
Permission granted by Defra for Rothamsted to carry out a field trial with GM Camelina plants that produce omega-3 fish oils in their seeds.
Monday, April 28, 2014
BBSRC, NSF Co-Fund International Arabidopsis Resource

Friday, March 14, 2014
Genetic traits in cattle identified that might allow farmers to breed livestock with increased resistance to bovine tuberculosis (TB)
The BBSRC-funded scientists compared the genetic code of TB-infected animals with that of disease-free cattle, could help to impact on a disease that leads to major economic losses worldwide.
Tuesday, February 18, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
£17.7M for Major Long-Term Research Projects to Harness the Power of Bioscience
Research for agriculture, health, alternatives to fossil fuels, and new commercial products.
Monday, December 16, 2013
Crop-Infecting Virus Forces Aphids to Spread Disease
Viruses alter plant biochemistry in order to manipulate visiting aphids into spreading infection.
Friday, December 06, 2013
Octocopter to Monitor Crops
BBSRC has invested in unmanned aerial vehicle (UAV) technology to monitor crops and crop experiments as part of several genetic improvement projects.
Wednesday, December 04, 2013
Scientific News
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos