Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Professor Leads Project to Breed Beans Resistant to Climate Stresses

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
With support from a $5 million grant, an international team will establish the Feed the Future Innovation Lab for Climate-Resilient Beans.

The project will employ novel techniques to accelerate breeding programs for the common bean aimed at conferring traits that can increase yield under heat and drought stress.

Feed the Future is the U.S. government's global hunger and food security initiative. With a focus on smallholder farmers, particularly women, Feed the Future supports partner countries in developing their agriculture sectors to spur economic growth and trade that increase incomes and reduce hunger, poverty and undernutrition.

The common bean is a staple food in the diet of millions of people around the globe. But environmental stresses such as heat, drought and low soil fertility -- often made worse by climate change -- limit yields in many regions of the developing world, contributing to hunger and poverty.

To help address these challenges, researchers are hoping to develop bean plants that can produce higher yields under such harsh conditions, with an eye toward winning acceptance of these new varieties among women, families and smallholder farmers.

Other scientists partnering in the project are co-principal investigators Kathleen Brown, professor of plant stress biology, Penn State; Steve Beebe, of the International Center for Tropical Agriculture; Magalhaes Miguel, of the Agricultural Research Institute of Mozambique; Phil McClean, of North Dakota State University; Jill Findeis, of the University of Missouri; James Beaver, of the University of Puerto Rico; Jeffrey White, Timothy Porch and Phil Miklas, of the U.S. Department of Agriculture's Agricultural Research Service; and Juan Carlos Rosas, of Zamorano University in Honduras.

"Past breeding for stress-tolerant beans has relied primarily on yield trials, which are imprecise and costly and sample only a limited range of environmental and management options," Lynch said. "Recent developments in crop physiology, phenomics, genomics and technology dissemination present opportunities to accelerate progress by targeting specific traits and integrating them into breeding programs."

To screen germplasm, Lynch's team will initiate a coordinated network of trials to evaluate bean abiotic stress in the United States, Mozambique, Colombia and Honduras. The breeding strategy will focus on specific traits that improve yield under heat and drought stress, combined with some supportive traits, such as root rot resistance and tolerance to low soil phosphorous.

"Drought and heat often are present together in key production environments, and many of the traits of interest are important for tolerance to both stresses," Lynch said. "The coordinated development of stress-tolerant germplasm from breeding programs across three continents will enable substantial synergies, especially in the application of tools, results and lines across regions and stresses."

Lynch noted that novel phenotyping methods will be used to characterize bean germplasm for useful traits, identify new sources of tolerance and guide selection programs. "For drought tolerance, we will focus on root traits that improve water uptake from drying soil and more efficient grain filling under stress," he said. "For heat tolerance, we will focus on improving pollen function and grain filling."

The researchers will deploy phenotypic data and next-generation genomics tools, including the recently completed sequence of the bean genome, to identify markers and candidate genes conferring useful traits, Lynch explained.

To increase acceptance of new lines of beans generated by the breeding program, the research team will analyze bean production and consumption trait preferences among women and families, identify barriers to adoption and involve growers in varietal selection with new bean lines at village sites.

"We will develop and pilot educational materials to increase women's knowledge of common bean varieties and legume-based farming systems that they can employ to increase family and household resilience under climate change," Lynch said.

The Feed the Future Innovation Lab for Climate-Resilient Beans, one of 10 new Innovation Labs announced Oct. 30 by USAID Administrator Rajiv Shah, is part of the Feed the Future initiative's Food Security Innovation Center. The center was launched in 2012 to support innovative research aimed at transforming agricultural production systems through "sustainable intensification" -- or producing more food in an environmentally sensitive manner -- ensuring access to nutritious and safe foods, creating enabling and supportive policies, and addressing the emerging challenges of climate change and natural resource scarcity.

"Throughout history, our greatest development advances have come from introducing safe, proven and appropriate technologies to the world's most vulnerable people," Shah said. "Building upon a strong history of research collaboration, these new Feed the Future Innovation Labs will draw on the very best research, extension and education strengths of the U.S. and global university community to improve nutrition, end hunger and help eradicate extreme poverty around the world."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Endangered Lemurs' Complete Genomes are Sequenced and Analyzed for Conservation
For the first time, the complete genomes of three separate populations of aye-ayes have been sequenced and analyzed in an effort to help guide conservation efforts.
Tuesday, March 26, 2013
Search begins for dean of the College of Agricultural Sciences
Penn State initiates U.S. wide search for candidates.
Thursday, January 10, 2013
Scientific News
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Fossil Fuel Emissions will Complicate Radiocarbon Dating, Warns Scientist
The paper is published in the journal PNAS.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!