Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Emergence of New Crop Pests: Genetics in Action

Published: Thursday, November 14, 2013
Last Updated: Thursday, November 14, 2013
Bookmark and Share
Scientists discover the genetic mechanisms that allow aphids to adapt to a new host plant and provide natural resistance to neonicotinoid insecticides.

Insect host shifts are important because they may be a first step in the evolution of new species and can create new pests of agriculturally important crops. A barrier to many potential insect host shifts are the secondary metabolites or allelochemicals many plants produce in order to defend themselves from plant feeding (herbivorous) pests like aphids. Consequently, insect pests can only be successful in using such plant species as food if they develop mechanisms to overcome sensitivity to the defense compounds that a plant is releasing.

Identifying the initial genetic changes involved in this process has proved elusive. Rothamsted Research scientists, who receive strategic funding from the BBSRC, in collaboration with researchers from the Liverpool School of Tropical Medicine and Bayer CropScience AG in Germany, have characterised novel genetic changes that underlie an insect host shift and the emergence of a new subspecies of crop pest with natural resistant to pesticides. The study is published today in the journal Proceedings of the National Academy of Sciences (PNAS).

The peach potato aphid (Myzus persicae) is a major crop pest, one of the most common greenfly pests within the UK and globally. It can cause substantial crop yield losses through the transmission of up to 120 distinct plant viruses and/or directly through feeding and sucking the sap of plants. A subspecies of peach potato aphid (Myzus percicae nicotianae) has evolved to feed and survive on tobacco plants. Aphids of this subspecies show reduced sensitivity to the secondary metabolite nicotine, which is a potent natural insecticide produced by tobacco. Interestingly, these aphids also show reduced sensitivity to neonicotinoids a class of synthetic insecticides. This study aimed to identify how aphids manage to overcome the toxic effects of the tobacco-produced nicotine and understand how this relates to resistance to neonicotinoids.

Dr Chris Bass of Rothamsted Research, who is funded by a fellowship from the BBSRC, and led the study said: "We are excited that for the first time we have been able to characterise the genetic mutations involved in the initial steps of the host shift of the peach potato aphid to tobacco. We found that a detoxification enzyme called CYP6CY3, which is naturally present in all aphids, is responsible for the metabolism of nicotine to less toxic compounds. However, for this process to occur at significant levels that allow survival of aphids that feed on tobacco plants the gene producing this enzyme needs to be present in many more copies than the normal two copies, up to 100 copies in the most resistant aphids.

"In addition to the gene amplification we have also been able to show that changes in the part of the gene that gives information as to when and where the enzyme should be made (i.e. the regulatory region of CYP6CY3) contribute to the overexpression of the gene. Together these two mechanisms work in concert to produce high levels of the enzyme which breakdowns nicotine and has also pre-adapted tobacco-adapted races to resist man-made insecticides".

Professor Lin Field of Rothamsted Research said: "The findings of this study are very exciting because they provide novel insights into the fundamental evolutionary processes that have driven adaptation in an aphid and similar mechanisms may be employed by other insect species. Additionally, we now have further understanding of the molecular mechanisms that can drive insecticide resistance and this can be utilised when developing pest management strategies."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
A Synthetic Biology Approach to Improve Photosynthesis
Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis.
Friday, May 16, 2014
Green Vaccination: Boosting Plant Immunity Without Side Effects
A team of international researchers has uncovered a mechanism by which plants are able to better defend themselves against disease causing pathogens.
Tuesday, May 06, 2014
Rothamsted Research Granted Permission for new GM Field Trial
Permission granted by Defra for Rothamsted to carry out a field trial with GM Camelina plants that produce omega-3 fish oils in their seeds.
Monday, April 28, 2014
BBSRC, NSF Co-Fund International Arabidopsis Resource

Friday, March 14, 2014
Genetic traits in cattle identified that might allow farmers to breed livestock with increased resistance to bovine tuberculosis (TB)
The BBSRC-funded scientists compared the genetic code of TB-infected animals with that of disease-free cattle, could help to impact on a disease that leads to major economic losses worldwide.
Tuesday, February 18, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
£17.7M for Major Long-Term Research Projects to Harness the Power of Bioscience
Research for agriculture, health, alternatives to fossil fuels, and new commercial products.
Monday, December 16, 2013
Crop-Infecting Virus Forces Aphids to Spread Disease
Viruses alter plant biochemistry in order to manipulate visiting aphids into spreading infection.
Friday, December 06, 2013
Octocopter to Monitor Crops
BBSRC has invested in unmanned aerial vehicle (UAV) technology to monitor crops and crop experiments as part of several genetic improvement projects.
Wednesday, December 04, 2013
Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Roundup Impacts Gene Expression
Study published on the impact of low-dose toxicity of Roundup weed-killer on gene expression profiles.
Meaningful Part of Maize Genome Defined
FSU-Cornell team show that a small percentage of the maize genome is responsible for 40 percent of a plant’s trait diversity.
Plant Stem Cell Discovery Points to Increased Yields
Braking signals from the leaves tell stem cells to stop proliferating.
Plasma Dose Improves Agricultural Crop Harvests
Researchers at Japan have developed a technique to improve crop yields by treating seeds prior to planting with a safe dose of plasma radiation.
TGAC Installs Largest SGI UV 300 Supercomputer for Life Sciences
The Genome Analysis Centre (TGAC) partners with Global HPC hardware giant SGI to address the most complex problems in genomics analysis.
Carrot Genome Uncovered
Carrot genome paints picture of domestication, could help improve crops.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!