Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Engineer Breakthrough for Biofuel Production

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
Prospects for economic and sustainable fuel alternative enhanced with discovery.

Researchers at Scripps Institution of Oceanography at UC San Diego have developed a method for greatly enhancing biofuel production in tiny marine algae.

As reported in this week’s online edition of the Proceedings of the National Academy of Sciences, Scripps graduate student Emily Trentacoste led the development of a method to genetically engineer a key growth component in biofuel production.

In the quest to loosen humanity’s dependence on traditional fossil fuel consumption, and with it rising concentrations of carbon dioxide and their damaging impacts on the environment, finding economically viable fuels from biological sources has been elusive.

A significant roadblock in algal biofuel research surrounds the production of lipid oils, the fat molecules that store energy that can be produced for fuel. A catch-22 has stymied economically efficient biofuel production because algae mainly produce the desired lipid oils when they are starved for nutrients. Yet if they are limited in nutrients, they don’t grow well. With a robust diet algae grow well, but they produce carbohydrates instead of the desired lipids for fuel.

In a significant leap forward that clears the lipid production hurdle, Trentacoste and her colleagues used a data set of genetic expression (called “transcriptomics” in laboratories) to target a specific enzyme inside a group of microscopic algae known as diatoms (Thalassiosira pseudonana). By metabolically engineering a “knock-down” of fat-reducing enzymes called lipases, the researchers were able to increase lipids without compromising growth. The genetically altered strains they developed, the researchers say, could be produced broadly in other species.

“These results demonstrate that targeted metabolic manipulations can be used to increase accumulation of fuel-relevant molecules.… with no negative effects on growth,” said Trentacoste. “We have shown that engineering this pathway is a unique and practical approach for increasing lipid yields.”

“Scientifically this is a huge achievement,” said Mark Hildebrand, a marine biology professor at Scripps and a coauthor of the study. “Five years ago people said you would never be able to get more lipids without affecting growth negatively. This paper shows that there isn’t an intrinsic barrier and gives us hope of more new things that we can try—it opens the door to a lot more work to be done.”

In addition to lowering the cost of biofuel production by increasing lipid content, the new method has led to advances in the speed of algal biofuel crop production due to the efficient screening process used in the new study.

“Maintaining high growth rates and high biomass accumulation is imperative for algal biofuel production on large economic scales,” the authors note in the paper.

“It seems especially fitting that Scripps-UC San Diego is displaying so much leadership in the field of sustainable biofuels from algae, for instance with the California Center for Algae Biotechnology starting here, given the history of the institution playing such a pivotal role in climate change research,” said paper coauthor William Gerwick, a distinguished professor of oceanography and pharmaceutical sciences
at Scripps’s Center for Marine Biotechnology and Biomedicine
and UC San Diego’s Skaggs School of Pharmacy and Pharmaceutical Sciences. “But these advances do not happen in isolation, and the current project is a great illustration of how different labs can collaborate to achieve greater advances than possible singly.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
Custom Tuning Knobs to Turn Off Any Gene
Factory managers can improve productivity by telling workers to speed up, slow down or stop doing tangential tasks while assembling widgets. Unfortunately for synthetic biologists attempting to produce pharmaceuticals, microbes don’t respond to direction like human personnel.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!