Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Chip Will Help Salmon Farmers Breed Better Fish

Published: Monday, February 17, 2014
Last Updated: Monday, February 17, 2014
Bookmark and Share
Atlantic salmon production could be boosted by a new technology that will help select the best fish for breeding.

The development will enable salmon breeders to improve the quality of their stock and its resistance to disease.

A chip loaded with hundreds of thousands of pieces of DNA – each holding a fragment of the salmon's genetic code – will allow breeders to detect fish with the best genes.

It does so by detecting variations in the genetic code of each individual fish – known as single nucleotide polymorphisms (SNPs). These variations make it possible to identify genes that are linked to desirable physical traits, such as growth or resistance to problematic diseases, for example sea lice infestations.

Salmon breeders will be able to carry out the test by taking a small sample of fin tissue.

The chip carries over twenty times more genetic information than existing tools. Similar chips have already transformed breeding programmes for land-farmed livestock including cattle and pigs.

Salmon farming contributes around half a billion pounds to the UK economy each year and provides healthy, high quality food. Worldwide, approximately 1.5 million tonnes of Atlantic salmon are produced every year.

Scientists from the University of Edinburgh's Roslin Institute and Edinburgh Genomics initiative developed the chip with researchers from the Universities of Stirling and Glasgow. They worked with industrial partners Affymetrix UK and Landcatch Natural Selection. The work was funded by the UK's innovation agency – the Technology Strategy Board – and BBSRC.

The chip is highlighted in a study published today in the journal BMC Genomics and it will be available to breeders and farmers from March 2014.

Dr Ross Houston, of The Roslin Institute, said: "Selective breeding programmes have been used to improve salmon stocks since the 1970s. This new technology will allow the best breeding fish to be selected more efficiently and accurately, particularly those with characteristics that are difficult to measure such as resistance to disease."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Super Wheat Brought Closer to Reality
Scientists at the John Innes Centre (JIC) and The Sainsbury Laboratory (TSL) have pioneered a new gene-detecting technology which, if deployed correctly could lead to the creation of a new elite variety of wheat with durable resistance to disease.
Mechanism Behind Plant Withering Clarified
Reproducing the reaction in which harmful reactive oxygen species are created during plant photosynthesis allows researchers to confirm the mechanism behind plant withering.
Sequencing the Salmon Genome
Researchers have established a “human” quality sequence of the Atlantic salmon genome that is now available online.
Improved Path to Cassava Production
Researchers have studied the genetic diversity of cassava, highlighting strategies to improve breeding programmes.
New Online Tool Helps Predict Gene Expression in Plants
Scientists at The Genome Analysis Centre (TGAC) and The John Innes Centre have developed a free online tool that will help a global community of scientists understand more about important food crops.
Rare DNA Transfer Between Animals, Plants
Scientists identify rare DNA transfer between conifers and insects.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!