Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genetic traits in cattle identified that might allow farmers to breed livestock with increased resistance to bovine tuberculosis (TB)

Published: Tuesday, February 18, 2014
Last Updated: Tuesday, February 18, 2014
Bookmark and Share
The BBSRC-funded scientists compared the genetic code of TB-infected animals with that of disease-free cattle, could help to impact on a disease that leads to major economic losses worldwide.

The research, led by the University of Edinburgh's Roslin Institute, has identified a number of genetic signatures associated with TB resistance in the cows that remained unaffected.

The study builds on previous research by The Roslin Institute, which showed that some cattle might be more resistant to bovine TB as a result of their genetic make-up.

Researchers at The Roslin Institute say the latest finding is significant as it sheds further light on whether it might be possible to improve TB control through selective breeding.

The team used the latest gene identification techniques to compare the genes of healthy and infected female Holstein-Friesians.

Bovine TB, caused by a bacterium called Mycobacterium bovis, not only infects cattle, but other livestock and wildlife. It also remains a risk to humans. 

Despite intensive efforts over many decades, bovine TB continues to have a serious impact on livestock at home and abroad, affecting farm profitability and animal welfare. In 2010/2011, its effects cost the UK government £152 million.

This latest research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the EU, ispublished in the journal Heredity.

Researchers at The Roslin Institute worked on the study with colleagues from the Agri-Food and Biosciences Institute (AFBI) and Queen's University Belfast.

Refining genomic predictors of resistance will be the focus of a new BBSRC-funded study to be carried out by researchers at Roslin, the AFBI and Scotland's Rural College, the SRUC.

Lead researcher Professor Glass said of the results: "Differences between cattle in their genes is not the only factor in determining whether the animal will get bovine TB or not; various environmental factors as well as differences in the TB bacteria may also affect susceptibility.

"If we can choose animals with better genotypes for TB resistance, then we can apply this information in new breeding programmes alongside other control strategies. It is hoped that can help us to more effectively control TB in cattle."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
A Synthetic Biology Approach to Improve Photosynthesis
Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis.
Friday, May 16, 2014
Green Vaccination: Boosting Plant Immunity Without Side Effects
A team of international researchers has uncovered a mechanism by which plants are able to better defend themselves against disease causing pathogens.
Tuesday, May 06, 2014
Rothamsted Research Granted Permission for new GM Field Trial
Permission granted by Defra for Rothamsted to carry out a field trial with GM Camelina plants that produce omega-3 fish oils in their seeds.
Monday, April 28, 2014
BBSRC, NSF Co-Fund International Arabidopsis Resource

Friday, March 14, 2014
UK Establishes Three New Synthetic Biology Research Centres
Bristol, Nottingham and a Cambridge/Norwich partnership will be UK centres for synthetic biology.
Friday, January 31, 2014
£17.7M for Major Long-Term Research Projects to Harness the Power of Bioscience
Research for agriculture, health, alternatives to fossil fuels, and new commercial products.
Monday, December 16, 2013
Crop-Infecting Virus Forces Aphids to Spread Disease
Viruses alter plant biochemistry in order to manipulate visiting aphids into spreading infection.
Friday, December 06, 2013
Octocopter to Monitor Crops
BBSRC has invested in unmanned aerial vehicle (UAV) technology to monitor crops and crop experiments as part of several genetic improvement projects.
Wednesday, December 04, 2013
More than Bread and Beer: the National Collection of Yeast Cultures
Yeasts are one of the earliest, if not the earliest, biological tools used by people.
Thursday, November 28, 2013
Scientific News
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos