Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

French Researchers to Identify Best Microbes for Biofuel Production

Published: Wednesday, February 19, 2014
Last Updated: Wednesday, February 19, 2014
Bookmark and Share
Scientists used atomic force microscopy combined with infrared spectroscopy.

Anasys Instruments reports on the publication in the Journal of Physical Chemistry Letters demonstrating the use of AFM-IR used by French researchers to identify best microbes for biofuel production.

While the debate over using crops for fuel continues, scientists are now reporting a new, fast approach to develop biofuel in a way that doesn't require removing valuable farmland from the food production chain.

Their work examining the fuel-producing potential of Streptomyces, a soil bacterium known for making antibiotics, appears in ACS' The Journal of Physical Chemistry Letters.

The scientists used atomic force microscopy combined with infrared spectroscopy (AFM-IR) to measure the size and map the distribution of oil inclusions inside of microorganism without staining or other special sample preparation. The same method also could help researchers identify other microbes that could be novel potential fuel sources.

The authors led by Ariane Deniset-Besseau from the Laboratoire de Chimie-Physique at the Universite Paris-Sud point out that with the rise in oil prices in recent years, the search has been on for alternative fuels. Though plants such as soy and corn have been popular, the honeymoon ended as people realized how much arable land they were taking up.

So now, researchers are seeking additional sources, including bacteria. Streptomyces has become a candidate in this search. It can make and store large amounts of oils called triacylglycerols (TAGs), which are direct precursors of biodiesel.

Also, manufacturers already know how to grow vast amounts of it because pharmaceutical companies use the versatile bacterium to produce life-saving antibiotics. To better understand these microbes' potential as a fuel source, Deniset-Besseu's team wanted to explore how Streptomyces stores TAGs.

They used a novel laboratory instrument that combines an atomic force microscope with a tunable infrared laser source. This instrument allows researchers to determine how and where the bacteria store TAGs.

Some strains hardly accumulate any oil, whereas others stored large amounts of oil in a way that might be easy to harvest.

The researchers conclude that their technique could greatly speed up the identification of other microbes that could produce large amounts of bio-oil.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Antibiotic Resistance Can Occur Naturally in Soil Bacteria
Scientists have found natural anti-biotic resistant bacteria in soils with little to no human exposure.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Breakthrough in Plant Salt-Tolerance Research
Researchers have made a breakthrough in plant salt tolerance that could lead to new salt tollerant crop types.
Microbes Help Plants Survive In Severe Drought
Researchers discover plants survive better under drought conditions with help from natural microbes.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!