Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fighting to Reduce Dependence on Chemical Fungicides

Published: Wednesday, February 19, 2014
Last Updated: Wednesday, February 19, 2014
Bookmark and Share
The research is focused on how plants defend themselves against oomycetes and fungi.

Scientists at the Institution of Plant Protection Biology within the Swedish University of Agricultural Sciences, have been researching into how to reduce the dependence on chemical fungicides in farming.

The goal of the researchers has been to understand plant defense mechanisms and so produce plants that are more resistant to disease, which will lessen pesticide use, and ultimately benefit the environment, and have been using Qlucore Omics Explorer to aid their research.

The research is focused on how plants defend themselves against oomycetes and fungi. Oomycetes, also known as "water molds", are a group of several hundred organisms that include some of the most devastating plant pathogens.  The diseases they cause include seedling blights, damping-off, root rots, foliar blights and downy mildews.  Some notable diseases are the late blight of potato, downy mildew of grape vine, sudden oak death, and root and stem rot of soybean.  The team of 16 at the Institution of Plant Protection Biology have been studying biochemical components of plant defense and the interactions with pathogens and trying to identify resistance factors that can be used in future breeding for disease resistance crops, and in developing methods for induced resistance by applying non-toxic inducing agents. The goal is to reduce the dependence on chemical fungicides.

The simple potato comes under particular scrutiny. Potato late blight, caused by Phytophthora infestans, is one of the most devastating pathogens worldwide. In Swedish agriculture almost half of all fungicides are used against this pathogen. To reduce the dependence on fungicides there is a great need for novel resistance, and several projects involve work with resistance against this disease, and also breeding of potatoes. The resistance mechanisms are ilucidated by identification of proteins involved in the interaction between this oomycete and the plant (proteomics and phosphoproteomics) and by studies of the infection process with microscopical and molecular methods.

In the past, one of the major problems facing the scientists was how to handle the increasingly vast amounts of data that was being produced from their research.

"Seeing structures in the data and finding meaningful biology in them has been a problem," commented Dr Erik Alexandersson, Assistant professor at SLU Alnarp, Institution of Plant Protection Biology. "We started using Qlucore Omics Explorer in 2009 for studies in, Proteomics, Evolutionary biology, Phylogenetics and Microarray analysis. Using Qlucore Omics Explorer has overcome these failings to a large extent through its dynamic visualization tool".

By the active use of Visualisation techniques important structures and patterns can be identified quickly, with the user getting instant feedback. Qlucore Omics Explorer allows 3D modeling and the ability to change parameters quickly and easily which has speeded up the whole process of analysis, and can be done by biologists and researchers with no specialist knowledge of mathematics.

"We have used Qlucore both for gene expression and quantitative proteomics data," continued Dr Erik Alexandersson . "Some of the sampling is done in the field in order to obtain molecular data in a realistic setting as it would be out in the farm avoiding laboratory artifacts. We see clear differences in the mechanisms at play in these two settings. Qlucore has turned out to be very powerful in handling noisy data and quickly assessing underlying structures not relevant to the research question. We were recently able to "save" a noisy dataset by taking the set-up time into account and use the function "eliminate factor" in Qlucore."

In other studies Qlucore has helped the researchers to identify transcript and proteins associated to resistance against Phytopthora by comparing the expression status under various conditions of potato lines with varying levels of resistance. These candidates are currently being confirmed by genetic transformations in the laboratory as part of the SSF grant "Resistance to late blight in potato".

The discoveries being made are now being tried out in wet lab studies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!