Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fighting to Reduce Dependence on Chemical Fungicides

Published: Wednesday, February 19, 2014
Last Updated: Wednesday, February 19, 2014
Bookmark and Share
The research is focused on how plants defend themselves against oomycetes and fungi.

Scientists at the Institution of Plant Protection Biology within the Swedish University of Agricultural Sciences, have been researching into how to reduce the dependence on chemical fungicides in farming.

The goal of the researchers has been to understand plant defense mechanisms and so produce plants that are more resistant to disease, which will lessen pesticide use, and ultimately benefit the environment, and have been using Qlucore Omics Explorer to aid their research.

The research is focused on how plants defend themselves against oomycetes and fungi. Oomycetes, also known as "water molds", are a group of several hundred organisms that include some of the most devastating plant pathogens.  The diseases they cause include seedling blights, damping-off, root rots, foliar blights and downy mildews.  Some notable diseases are the late blight of potato, downy mildew of grape vine, sudden oak death, and root and stem rot of soybean.  The team of 16 at the Institution of Plant Protection Biology have been studying biochemical components of plant defense and the interactions with pathogens and trying to identify resistance factors that can be used in future breeding for disease resistance crops, and in developing methods for induced resistance by applying non-toxic inducing agents. The goal is to reduce the dependence on chemical fungicides.

The simple potato comes under particular scrutiny. Potato late blight, caused by Phytophthora infestans, is one of the most devastating pathogens worldwide. In Swedish agriculture almost half of all fungicides are used against this pathogen. To reduce the dependence on fungicides there is a great need for novel resistance, and several projects involve work with resistance against this disease, and also breeding of potatoes. The resistance mechanisms are ilucidated by identification of proteins involved in the interaction between this oomycete and the plant (proteomics and phosphoproteomics) and by studies of the infection process with microscopical and molecular methods.

In the past, one of the major problems facing the scientists was how to handle the increasingly vast amounts of data that was being produced from their research.

"Seeing structures in the data and finding meaningful biology in them has been a problem," commented Dr Erik Alexandersson, Assistant professor at SLU Alnarp, Institution of Plant Protection Biology. "We started using Qlucore Omics Explorer in 2009 for studies in, Proteomics, Evolutionary biology, Phylogenetics and Microarray analysis. Using Qlucore Omics Explorer has overcome these failings to a large extent through its dynamic visualization tool".

By the active use of Visualisation techniques important structures and patterns can be identified quickly, with the user getting instant feedback. Qlucore Omics Explorer allows 3D modeling and the ability to change parameters quickly and easily which has speeded up the whole process of analysis, and can be done by biologists and researchers with no specialist knowledge of mathematics.

"We have used Qlucore both for gene expression and quantitative proteomics data," continued Dr Erik Alexandersson . "Some of the sampling is done in the field in order to obtain molecular data in a realistic setting as it would be out in the farm avoiding laboratory artifacts. We see clear differences in the mechanisms at play in these two settings. Qlucore has turned out to be very powerful in handling noisy data and quickly assessing underlying structures not relevant to the research question. We were recently able to "save" a noisy dataset by taking the set-up time into account and use the function "eliminate factor" in Qlucore."

In other studies Qlucore has helped the researchers to identify transcript and proteins associated to resistance against Phytopthora by comparing the expression status under various conditions of potato lines with varying levels of resistance. These candidates are currently being confirmed by genetic transformations in the laboratory as part of the SSF grant "Resistance to late blight in potato".

The discoveries being made are now being tried out in wet lab studies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!