Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Full Genome Sequence of Camelina Published

Published: Wednesday, April 23, 2014
Last Updated: Thursday, April 24, 2014
Bookmark and Share
Technical details of the genome sequence result from work conducted by scientists supported through Genome Prairie’s Prairie Gold project.

Saskatchewan scientists have contributed key scientific resources to the oilseed crop known as Camelina with the publication of new research findings in the academic journal, Nature Communications. The article published today, features technical details of Camelina’s genome sequence resulting from work conducted by scientists supported through Genome Prairie’s Prairie Gold project.

Camelina is an increasingly popular oilseed crop that is recognized for its potential as a viable and renewable industrial feedstock. The crop’s high oil content and fatty acid composition make it suitable for transformation into value-added industrial products such as jet fuel, biodiesel and lubricants. The crop is also well suited for Western Canadian growing conditions, with natural drought tolerance and resistance to diseases and pests such as blackleg and flea beetles.

“The development of a full genome sequence has deepened our understanding of the unique genetic factors underpinning the crop’s agronomic and oil profile” said Dr. Andrew Sharpe, Research Officer at the National Research Council of Canada. “This work reveals some of the complexities surrounding the Camelina genome and provides insights needed to pursue new possibilities for future improvement of the crop”.

Today’s journal article highlights how scientists have uncovered Camelina’s complex genome and relatively large chromosome number. Most notably, the crop maintains three distinct genomes that behave independently and in a similar fashion to other polyploid crops such as canola and wheat.

“Publication of the fully sequenced genome makes this work available for the research community while solidifying Canada’s leadership position in this emerging crop” said Dr. Isobel Parkin, Research Scientist at Agriculture and Agri-Food Canada.

“The Prairie Gold research team has developed an important resource that will play a fundamental role in allowing Canadian businesses to build value-added opportunities related to Camelina” added Dr. Reno Pontarollo, President and CEO of Genome Prairie.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Saskatchewan Scientists Release DNA Sequence of New Industrial Oilseed Crop
Camelina, an oilseed crop popular in Europe prior to the dominance of rapeseed and canola, is increasingly recognized as a valuable industrial oil platform.
Tuesday, August 06, 2013
Scientific News
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
Custom Tuning Knobs to Turn Off Any Gene
Factory managers can improve productivity by telling workers to speed up, slow down or stop doing tangential tasks while assembling widgets. Unfortunately for synthetic biologists attempting to produce pharmaceuticals, microbes don’t respond to direction like human personnel.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
New Method Promises to Speed Development of Food Crops
A new study addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.
Where Cancer Cells May Begin
Scientists use fruit fly genetics to understand how things could go wrong in cancer.
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Milestone Resource in Wheat Research Now Available for Download
Leading on from The Genome Analysis Centre’s (TGAC) previous announcement of their new bread wheat genome assembly, the landmark resource is now publically available to download at the European Bioinformatics Institute’s (EMBL-EBI) Ensembl database for full analysis.
Nano-Reactor for the Production of Hydrogen Biofuel
Combining bacterial genes and virus shell creates a highly efficient, renewable material used in generating power from water.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!