Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Alfalfa Variety Resists Ravenous Local Pest

Published: Monday, April 28, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
The new variety has some resistance against the alfalfa snout beetle which has ravaged alfalfa fields.

Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across the St. Lawrence River in Canada.

There are no other known alfalfa snout beetle infestations in North America, but the pesky beetle has been spreading. The snout beetle’s larvae feed on and damage the alfalfa plant’s roots, limiting yields for this major livestock feed.

“We are the only ones who can work on [this pest], because it is so regional,” said Don Viands, professor of plant breeding and genetics and director of the Forage Breeding Project, where Jamie Crawford, a research support specialist, and Julie Hansen, a senior research associate, have done most of the breeding work.

The new resistant cultivar, called Seedway 9558 SBR, has been in development since 2003, along with six other populations. But Seedway 9558 SBR has provided the most resistance while also maintaining the highest yields.

On a scale of one to five, where one represents little to no root-feeding damage and five is severe root-feeding damage, Seedway 9558 SBR scored a 2.9.

“This initial variety is better than anything else, but we feel we can still do better,” Viands said. “We are trying to get a variety that is at least twice as good as this one.”

For effective control, the resistant alfalfa should be planted with a larvae-killing nematode that has been studied and released by Elson Shields, professor of entomology, said Viands.

In the alfalfa-breeding process, the researchers started with 16 alfalfa populations that they later whittled down to seven. Bred from an older variety, Seedway 9558 SBR went through seven breeding cycles. Each summer, plants were planted in deep trashcans in a greenhouse and similarly inoculated with alfalfa snout beetle eggs. After up to six weeks, Crawford selected up to 125 of the largest plants with the least root damage out of 2,000-3,000 plants per population. These were then replanted, cross-pollinated so they produced seed, and the seeds were replanted the following year to build resistance levels in each population.

“We are making significant progress in developing resistance, but it has been very slow,” Viands said. The first-year base crop for Seedway 9558 SBR was 13 percent resistant, compared with 38 percent after seven cycles. “Normally it takes four to five cycles to develop resistance, but this [alfalfa snout beetle resistance] may have multiple genes, so it is taking time,” Viands added, noting that it is still unknown exactly what mechanism allows the plant to deter the beetles.

The project is supported by the Cornell University Agricultural Experiment Station Hatch funds, the Northern New York Agricultural Development Program and the New York Farm Viability Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Wicked Weeds May Be Agricultural Angels
Agricutural scientists suggest less control over nature, as weeds can be beneficial to agriculture.
Wednesday, November 16, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Pest Attacks Can Lead to Bigger Crop Yields
New project receive three-year funding of $498,000 from USDA.
Thursday, June 26, 2014
Algal Genes May Boost Efficiency, Yield in Staple Crops
New research has taken a step toward employing genes from blue-green algae to improve staple crop photosynthesis.
Wednesday, May 21, 2014
Study to Focus on Rice Genes, Yield and Climate
Cornell researchers received a $600,000 grant from the U.S. Department of Agriculture (USDA) to study relationships among rice genetics, crop yields and climate.
Thursday, May 01, 2014
Predators Delay Pest Resistance to Bt Crops
Crops genetically modified with the bacterium Bt(Bacillus thuringiensis) produce proteins that kill pest insects.
Monday, March 10, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Surprises Discovered in Decoded Kiwifruit Genome
DNA sequence of the kiwifruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes.
Tuesday, October 22, 2013
Produce Perfect: Biotech Sweet Corn goes Unblemished
With the kernel-loving earworm, producing unblemished ears of sweet corn is difficult.
Monday, October 14, 2013
New Micro Water Sensor Can Aid Growers
Crop growers, wine grape and other fruit growers, food processors and even concrete makers all benefit from water sensors for accurate, steady and numerous moisture readings.
Monday, October 14, 2013
Partnership Homes in on Regenerative Medicine
Scientists are to advance healing techniques and technologies for animals and humans.
Friday, October 04, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Scientific News
Plant Analysis – Identifying Metabolites
New plant analysis method shows biologically active plant substances are far more common than previously thought.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Biologists Discover Origin of Stomata
Researchers discover genetic mechanism similar in flowering plants and mosses is a result of evolutionary conservation.
Uncovering a World of Viruses
Study that shows human diseases like influenza are derived from those present in invertebrates.
Engineering Bacteria to Aid Ethanol
Splicing in genes for ethanol production into bacteria in order to produce ethanol rather than not lactic acid.
Controlling Cell Division in Plants
Researchers succeeded in developing a new compound, a triarylmethane, that can rapidly inhibit cell division in plants.
Plant Aging Study Produces Insights into Crop Yields
New insights into the mechanism behind how plants age may help scientists better understand crop yields and nutrient allocation.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!