Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genome Analysis Reveals How Algae Evolved into Land Plants

Published: Thursday, May 29, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
Researchers analyze the genome of the terrestrial K. flaccidum and compared it with other algae.

By analyzing the genome of a terrestrial alga, researchers have revealed the presence of genes that enable plants to cope with the extremes of life on land, such as drought, and exposure to high-intensity light and UV.

“The colonization of land by plants was a key event in the evolution of life,” point out researchers in Japan in a recent report. The transition provided the nutrients and oxygen that allow terrestrial creatures to survive, yet so far there has been little evidence of the stages in the evolution of plants that allowed them to adapt from aquatic life to conditions on land.

A collaboration of researchers led by Hiroyuki Ohta from Center For Biological Resources and Informatics/Earth-Life Science Institute, Tokyo Institute of Technology in Japan has now identified features in the genome of a simple terrestrial alga that represent key evolutionary milestones for surviving in the more severe environments found on land.

The ancestors of present land plants are widely believed to be charophytes, a division of green algae that are distributed throughout the world. Despite the potential significance in the evolution of life, so far genome sequence data for charophytes has been fragmentary.

The charophyte Klebsormidium is a very simple multicellular organism and most species that have adapted to live on land can also live in water. Ohta and his team of researchers, which included scientists from several institutions in Japan, analyzed the genome of the terrestrial Klebsormidium flaccidum and compared it with other algae and land plants.

The comparison suggests that many of the genes required to survive on land were already present in the ancestor of K flaccidum. The researchers also identified genes coding for mechanisms to respond to environmental stimuli and to protect against high intensity sunlight.

The researchers conclude their report, “Our analysis provides evidence that K. flaccidum has the fundamental machinery required for adaptation to survival in terrestrial environments.”


Evolution for terrestrial life
Aquatic environments are significantly more stable than the conditions on land. High-intensity light and UV radiation and drought can cause stress and damage to plant cells without the evolutionary mechanisms to cope with them.

Gene family and domain comparisons
The researchers compared the sequences of 31 proteins from K flaccidum, 5 land plants, 7 charophyte algae and 9 other algae. They compared paralogues (genes belonging to a family containing two or more genes) singletons (genes that have no paralogue) and the number of gene families (meaning the number of families of paralogues and singletons).

They found that in algae the number of gene families increased in proportion to the total number of genes, whereas for land plants the number of gene families plateaus and paralogues occur more frequently. Notably the genes for important processes for terrestrial life - such as cell wall biogenesis and responding to external signals - occurred as singletons in K flaccidum, whereas they had many paralogues in land plants. They also found that a high percentage of protein domains and domain combinations found in land plants- 90.7% of the protein domains and 84.3% of the domain combinations - were present in K flaccidum.

Plant hormone mediated responses for dealing with drought, salinity and freezing
Land plants respond to changes in their environment through the release of hormones, which trigger response mechanisms. For example abscissic acid (ABA) is a signalling molecule for adapting to drought, salinity and freezing and auxin and cytokinin trigger a number of mechanisms key to growth. Presence of some hormones and counterparts of a part of their receptors were identified in K flaccidum, although many well-known receptors crucial for plant hormone signalling were absent suggesting that the alga had developed primitive land-plant signalling pathways.

Cyclic electron flow for dealing with high-intensity light
Several stresses, such as high-intensity light and drought activate cyclic electron flow in what is known as a stress responsive system in higher plant photosynthesis. Cyclic electron flow causes quenching processes and ATP synthesis, which help dissipate excess light energy protecting land plants from damage. The researchers identified seven genes that encode for cyclic electron flow pathways in K flaccidum.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Tuesday, September 08, 2015
Scientific News
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on the Origin of the Date Palm
Researchers also find ‘genetic mutation’ that is responsible for dates’ color.
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Speeding Up Potato Breeding
A joint project is investigating the potential of drones for speeding up the development of new potato varieties.
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos