Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Study Shows How Sheep First Separated from Goats

Published: Saturday, June 07, 2014
Last Updated: Saturday, June 07, 2014
Bookmark and Share
Findings support the development of DNA testing to speed-up selective breeding programmes.

Scientists have cracked the genetic code of sheep to reveal how they became a distinct species from goats around four million years ago.

The study is the first to pinpoint the genetic differences that make sheep different from other animals.

The findings could aid the development of DNA testing to speed-up selective breeding programmes, helping farmers to improve their stocks.

The research identifies the genes that give sheep their fleece and uncovers features of their digestive system, which makes them so well-suited to a diet of low quality grass and other plants.

It also builds the most complete picture yet of sheep's complex biology. Further studies using this resource could reveal new insights to diseases that affect sheep.

Researchers from the University of Edinburgh's Roslin Institute, which receives strategic funding from the Biotechnology and Biological Sciences Research Council, were part of a global team that has decoded the genome sequence - the entire genetic make-up - of domestic sheep for the first time.

This team - the International Sheep Genomics Consortium - compared the sheep's genes with those of other animals - including humans, cattle, goats and pigs.

The analysis identifies several genes that are associated with wool production. It also reveals genes that underpin the evolution of the rumen - a specialized chamber of the stomach that breaks down plant material to make it ready for digestion.

This collaborative study, involving 26 research institutions in eight different countries, was led by researchers from the Commonwealth Scientific and Industrial Research Organization, Australia; BGI and the Kunming Institute of Zoology, China; Utah State University and Baylor College of Medicine in the US; and The Roslin Institute.

The BBSRC-funded ARK-Genomics facility - which is part of Edinburgh Genomics at the University of Edinburgh - provided a substantial body of sequence data, including information on which genes are expressed in a spectrum of 40 different tissues.

The study is published in the journal Science.

Professor Alan Archibald, Head of Genetics and Genomics at The Roslin Institute, said: "Sheep were one of the first animals to be domesticated for farming and are still an important part of the global agricultural economy. Understanding more about their genetic make-up will help us to breed healthier and more productive flocks."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Accelerating Forage Breeding to Boost Livestock Productivity
International expert skill-sets in genomics and bioinformatics enhance our capacity to breed improved forages for Africa.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
So Long, Snout
Research helps answer how birds got their beaks.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Algae Nutrient Recycling is a Triple Win
Sandia method cheaper, greener and cuts competition for fertilizer.
Non-Transgenic Rapeseed Product Launched For Chinese Market
Cibus and Rotam have announced a new agreement to cooperate in the development of herbicide-tolerant rapeseed in China.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
BESC Creates Microbe That Bolsters Isobutanol Production
Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!