Corporate Banner
Satellite Banner
AgriGenomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A-maize-ing Double Life of a Genome

Published: Tuesday, July 15, 2014
Last Updated: Wednesday, July 16, 2014
Bookmark and Share
Study findings could help current efforts to improve existing crop varieties.

Early maize farmers selected for genes that improved the harvesting of sunlight, a new detailed study of how plants use 'doubles' of their genomes reveals. The findings could help current efforts to improve existing crop varieties.

Oxford University researchers captured a 'genetic snapshot' of maize as it existed 10 million years ago when the plant made a double of its genome – a 'whole genome duplication' event. They then traced how maize evolved to use these 'copied' genes to cope with the pressures of domestication, which began around 12,000 years ago. They discovered that these copied genes were vital to optimising photosynthesis in maize leaves and that early farmers selecting for them ‘fuelled’ the transformation of maize into a high-yield crop.

A report of the research is published this week in the journal Genome Research.

'Although whole genome duplication events are widespread in plants finding evidence of exactly how plants use this new 'toolbox' of copied genes is very difficult,' said Dr Steve Kelly of Oxford University's Department of Plant Sciences, lead author of the report. 'With crops like wheat it's not yet possible for us to unravel the 'before and after' of the associated genetic changes, but with maize we can chart how these gene copies were first acquired, then put to work, and finally 'whittled down' to create the modern maize plant farmed today.'

It is particularly useful for such genetic detective work that close relatives of maize did not duplicate their genomes 10 million years ago: those that retained a single copy went on to become the plant we now know as sorghum. This enabled the researchers to compare genetic data from these 'duplicated' and 'non-duplicated' descendants of ancient maize, something that is not yet possible with other duplicated crops like wheat.

In the wild plants have to overcome the challenges posed by pathogens and predators in order to survive. However, once domestication by humans began plants grown as crops had to cope with a new set of artificial selection pressures, such as delivering a high yield and greater stress tolerance.

'Whole genome duplication events are key in allowing plants to evolve new abilities,' said Dr Kelly. 'Understanding the complete trajectory of duplication and how copied genes can transform a plant is relevant for current efforts to increase the photosynthetic efficiency of crops, such as the C4 Rice Project. Our study is great evidence that optimising photosynthesis is really important for creating high-yield crops and shows how human selection has ‘sculpted’ copies of genes to create one of the world’s staple food sources.'





Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
New Foot-and-Mouth Vaccine is Safer and Cheaper to Produce
A new vaccine against foot-and-mouth disease that is safer to produce and easier to store has been developed by scientists from the University of Oxford and The Pirbright Institute.
Thursday, March 28, 2013
Organic Farms Not Necessarily Better for Environment
Organic farming is generally good for wildlife but does not necessarily have lower overall environmental impacts than conventional farming, a new analysis has shown.
Friday, September 07, 2012
Tackle Fungal Forces to Save Crops, Forests and Endangered Animals
More than 600 million people could be fed each year by halting the spread of fungal diseases in the world's five most important crops, according to research published today in the journal Nature.
Monday, April 16, 2012
Scientific News
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
More Rice, Less Greenhouse Gas?
An international group from China, Sweden and the U.S. has unveiled a genetically modified super rice that has more starch, yet releases a fraction of the harmful gas methane.
Kiwi Bird Genome Sequenced
The kiwi, national symbol of New Zealand, gives insights into the evolution of nocturnal animals.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
Faster, Better, Cheaper: a New Method to Generate Extended Data for Genome Assemblies
The Genome Analysis Centre have developed a new library construction method for genome sequencing that can simultaneously construct up to 12 size-selected long mate pair (LMP) or ‘jump’ libraries ranging in sizes from 1.7kb to 18kb with reduced DNA input, time and cost.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!