Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Genetic Basis for Rabbit Domestication Revealed

Published: Friday, August 29, 2014
Last Updated: Friday, August 29, 2014
Bookmark and Share
Research presents key findings in the DNA make-up of the common mammal’s brain and nervous system, which determines how wild rabbits were genetically transformed to domestic rabbits.

TGAC’s Director of Science Federica Di Palma, with an international team of scientists, leads ground-breaking study examining the domestication of rabbits. The study, published in Science, also predicts a similar diversity of gene variants that occur in humans and triggers our personality traits.

The new study, done in collaboration with scientists from TGAC (UK), The Broad Institute (US) and Uppsala University (Sweden), in addition to other international scientists in the rabbit research community, have made a breakthrough in their field by comparing wild and domestic rabbits. The research paper reports that many gene developments were involved in the domestication of rabbits, particularly controlling the improvement of the brain and the nervous system.

The domestication of animals and plants, a prerequisite for the development of agriculture, is one of the most import technological revolutions during history of mankind. However, there has been little knowledge of what genetic changes were required to transform a wild animal into a domesticated form. No previous study on animal domestication has involved such a careful examination of genetic variation in the wild ancestral species, allowing the researchers to pinpoint the genetic changes that have occurred during rabbit domestication.

Federica Di Palma, co-first author and Director of Science at TGAC, said: “The rabbit is a model for very recent domestication, and interestingly, we found that changes in many of the domestic rabbit’s genes play a role and were also present in the wild ancestor. We also found that these variations occur in the non-coding DNA part of the genome, emphasising the regulatory nature of the genetic basis underlying domestication in rabbits.”

The scientists were baffled by the clearly heightened changes involved in the development of the brain and the nervous system among the genes particularly targeted during domestication, alluding to the drastic changes in behaviour between wild and domestic rabbits. “The results we have are very clear, the difference between a wild and a tame rabbit is not which genes they carry, but how the expression of their genes is regulated,” said Leif Andersson, co-author and Head of Medical Biochemistry and Microbiology at Uppsala University.

Wild rabbits have very strong reactions due to them being hunted by other species and humans, and therefore, must be very alert to survive in the wild. Darwin used domestic animals as a proof-of-principle that it is possible to change the phenotype by selection. The current study has now been able to reveal the genetic basis for the remarkable change in behaviour, giving important new insights about the domestication process.

“Our study shows that the wild rabbit is a highly polymorphic species that carries rare gene variants that were favourable during domestication, and the accumulation of many small changes led to the evolution of the domestic rabbit in which the strong flight response had been inhibited. We predict that a similar process has occurred in other domestic animals and there will not be specific genes that are critical for domestication. It is very likely that a similar diversity of gene variants affecting the brain and the nervous system occurs in the human population and underlies differences in personality and behaviour, for instance, response to fear,” said Leif.

The scientists first sequenced the entire genome of one domestic rabbit to develop a reference genome assembly. They then re-sequenced the entire genome of domestic rabbits, representing six different breeds, and the wild rabbits genomes were sampled at 14 different places across the Iberian Peninsula and southern France. The rabbit is an outstanding model for genetic studies of domestication. The domestication of rabbits is relatively recent; and the region is still densely populated with wild rabbits.

Rabbit domestication has primarily occurred by altering the frequencies of gene variants that were already present in the wild ancestor. The new research shows that domestication has primarily involved many minor gene changes and few drastic gene changes. There were very few examples where a gene variant common in domestic rabbits had completely replaced the gene variant present in wild rabbits; it was rather the shifts in frequencies of those variants that were favoured in domestic rabbits. “An interesting consequence of this is that if you release domestic rabbits into the wild, there is an opportunity for back selection of those genes that have been altered during domestication because the ‘wild-type’ variant has rarely been completely lost. In fact, this is what we plan to study next,” said Leif.

Domestication of animals started as early as 9,000 to 15,000 years ago and initially involved dogs, cattle, sheep, goats and pigs. The rabbit was domesticated much later, about 1,400 years ago, at monasteries in southern France. It has been claimed that rabbits were domesticated because the Catholic Church had declared that young rabbit was not considered meat but fish and could, therefore, be eaten during lent. When domestication occurred, the wild ancestor, the European rabbit (Oryctolagus cuniculus), was only recorded on the Iberian Peninsula and in southern France.

The paper, titled: “Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication” is published in Science.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Big Data Era Pushes Training Need For Bioinformatics In Life Sciences
The GOBLET international consortium aims to share bioinformatics training expertise, experience, and resources.
Tuesday, April 28, 2015
New World-Class Scientific Collaboration To Combat Devastating Crop Rusts
Seven scientific teams from the co-located John Innes Centre (JIC), The Sainsbury Laboratory (TSL) and The Genome Analysis Centre (TGAC), have joined forces in the fight against rust fungi which can cut crop yields by up to 80%.
Thursday, January 29, 2015
TGAC In The Spotlight At Largest Global Supercomputing Conference
TGAC attended the annual SC14 conference in New Orleans, US, 16-21 November, the largest and most significant meeting for supercomputing and HPC professionals worldwide.
Monday, December 01, 2014
New Genetic Markers To Combat Yellow Rust Disease In Wheat Identified
New study released identifying genetic markers that signal resistance to the wheat yellow rust pathogen.
Wednesday, November 26, 2014
Completing Genome Sequence of Model Bacterium to Help Improve Grass-Crop Harvests
The soil bacterium, isolated from wheat roots in the central region of Argentina, has been used as a bio-fertiliser in agriculture during the last four decades.
Monday, August 18, 2014
Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos