Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Products>This Product

Gemini EM Fluorescence Microplate Reader

Product Description
The Gemini™ EM Fluorescence Microplate Reader exemplifies flexibility for fluorescence assays. Reading 6 to 384-well microplates, the optical design of the instrument can be switched from top to bottom read modes for improved sensitivity to solutions and cell-based assays. Dual monochromators for variable wavelength selection between 250 nm and 850 nm eliminate the need for searching out the right pair of excitation and emission filters and wavelength scanning across a range of wavelengths in increments as small as 1 nm can be used to optimize assay parameters. Up to 4 wavelength pairs can be read for endpoint and kinetic measurements, and the Gemini EM Microplate Reader offers well scanning to report a fluorescent measurement from a single point in the center of a microplate well to multiple points across a tissue culture well.

Unlike most fluorescence readers that may saturate out with signal intensities over 3 orders of magnitude, the patented AutoPMT Optimization System of the Gemini EM Microplate Reader adjusts the fluorescence detector to each sample well's concentration and normalizes the raw data, extending the dynamic range of assays so that low and high signals can be captured from the same plate. This calibration against an internal standard provides an additional benefit in being able to confidently compare relative fluorescence units (RFUs) of individual samples across plates and readers.

The Gemini EM Microplate Reader is supplied with SoftMax® Pro Data Acquisition & Analysis Software, Molecular Devices' industry leading all-in-one data acquisition and analysis software. Additionally, the Gemini EM Microplate Reader can be seamlessly integrated with the StakMax® Microplate Handling System through the SoftMax Pro Software.
Product Gemini EM Fluorescence Microplate Reader
Company Molecular Devices Product Directory
Price Request a quote
More Information View company product page
Catalog Number Unspecified
Quantity Unspecified
Company Logo

Molecular Devices Product Directory
1311 Orleans Drive Sunnyvale, CA 94089-11361 United States

Tel: 1-800-635-5577
Fax: 1-408-548-6439

Scientific News
Ancestors of Land Plants Were Wired to Make the Leap to Shore
When the algal ancestor of modern land plants made the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting the stage for the vast array of terrestrial life.
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Pancreatic Cancer Stem Cells Could be "Suffocated" by Anti-diabetic Drug
A new study shows that pancreatic cancer stem cells (PancSCs) are virtually addicted to oxygen-based metabolism, and could be “suffocated” with a drug already used to treat diabetes.
Scientists Learn How to Predict Plant Size
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling.
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Nanoporous Gold Sponge Makes Pathogen Detector
Sponge-like nanoporous gold could be key to new devices to detect disease-causing agents in humans and plants, according to UC Davis researchers.
Genetic Manipulation for Algal Biofuel Production
Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields.
Phosphorous Fertilizer
UD researchers identify behaviors of nanoparticle that shows promise as nanofertilizer.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Grape Waste Could Make Competitive Biofuel
The solid waste left over from wine-making could make a competitive biofuel, University of Adelaide researchers have found.

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos