Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Insights into Protein Folding May Lead to Better Flu Vaccine

Published: Friday, August 03, 2012
Last Updated: Friday, August 03, 2012
Bookmark and Share
New method for looking at how proteins fold allows researchers to take snapshots of ribosomes.

A new method for looking at how proteins fold inside mammal cells could one day lead to better flu vaccines, among other practical applications, say Cornell researchers.

The method, described online in the Proceedings of the National Academy of Sciences July 16, allows researchers to take snapshots of the cell's protein-making machinery - called ribosomes - in various stages of protein production.

The scientists then pieced together the snapshots to reconstruct how proteins fold during their synthesis.

Proteins are made up of long chains of amino acids called polypeptides, and folding gives each protein its characteristic structure, which determines its function.

Though researchers have used synthetic and purified proteins to study protein folding, this study looks at proteins from their inception, providing a truer picture for how partially synthesized polypeptides can fold in cells.

Proteins fold so quickly - in microseconds - that it has been a longtime mystery just how polypeptide chains fold to create the protein's structure.

"The speed is very fast, so it's very hard to capture certain steps, but our approach can look at protein folding at the same time as it is being synthesized by the ribosomes," said Shu-Bing Qian, assistant professor of nutritional sciences and the corresponding author on the paper.

Yan Han, a postdoctoral associate in Qian's lab, is the paper's first author.

In a nutshell, messenger RNA (mRNA) carries the coding information for proteins from the DNA to ribosomes, which translate those codes into chains of amino acids that make up proteins.

Previously, other researchers had developed a technique to localize the exact position of the ribosomes on the mRNA.

Qian and colleagues further advanced this technique to selectively enrich only a certain portion of the protein-making machinery, basically taking snapshots of different stages of the protein synthesis process.

"Like a magnifier, we enrich a small pool from the bigger ocean and then paint a picture from early to late stages of the process," Qian said.

In the paper, the researchers also describe applying this technique to better understanding a protein called hemagglutinin (HA), located on the surface of the influenza A virus; HA's structure (folding) allows it to infect the cell.

Flu vaccines are based on antibodies that recognize such proteins as HA. But viruses have high mutation rates to escape antibody detection.

Often, flu vaccines lose their effectiveness because surface proteins on the virus mutate. HA, for example, has the highest mutation rate of the flu virus' surface proteins.

The researchers proved that their technique can identify how the folding process changes when HA mutates.

"If people know the folding picture of how a mutation changes, it will be helpful for designing a better vaccine," Qian said.

"Folding is a very fundamental issue in biology," Qian added. "It's been a long-term mystery how the cell achieves this folding successfully, with such speed and with such a great success rate."

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vortex Ring Freezing Applications
Accidental lab discovery could aid cell delivery and cell-free protein production.
Monday, August 22, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
The Power Of Orthogonality In Assessing The Stability Of Biopharmaceuticals
By utilizing orthogonal techniques, researchers can maximize the secure application of all analytical results generated.
Dysfunction in Neuronal Transport Mechanism Linked to Alzheimer’s
Findings confirm mutation-caused problem but also reveal a new therapeutic target.
New Antibody Therapy Permanently Blocks SIV Infection
An international research team has developed an effective treatment strategy against the HIV-like Simian Immunodeficiency Virus (SIV) in rhesus macaques.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Rare Flu-Thwarting Mutation Discovered
Study finds protein mutation, that is encoded by influenza, causes the virus to lose any defence against the immune system.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos