Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Vaccine and Antibiotics Stabilized so Refrigeration is not Needed

Published: Monday, August 06, 2012
Last Updated: Monday, August 06, 2012
Bookmark and Share
NIH study could pave way for development of enhanced delivery and storage in third world, save billions in cost.

Researchers funded by the National Institutes of Health have developed a new silk-based stabilizer that, in the laboratory, kept some vaccines and antibiotics stable up to temperatures of 140 degrees Fahrenheit.

This provides a new avenue toward eliminating the need to keep some vaccines and antibiotics refrigerated, which could save billions of dollars every year and increase accessibility to third world populations.

Vaccines and antibiotics often need to be refrigerated to prevent alteration of their chemical structures; such alteration can result in less potent or ineffective medications.

By immobilizing their bioactive molecules using silk protein matrices, researchers were able to protect and stabilize both live vaccines and antibiotics when stored at higher than recommended temperatures for periods far longer than recommended.

The research was led by grantees of NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB), David Kaplan, Ph.D., and Jeney Zhang, Ph.D. candidate, at Tufts University School of Engineering in Medford, Mass.

The National Eye Institute and the National Institute of Dental and Craniofacial Research at NIH also contributed to this research. The researchers reported on their findings in the online issue of Proceedings of the National Academy of Sciences on July 9, 2012.

"This truly exciting development is the culmination of years of creative exploration and research focused on a major problem in the delivery of health care. Dr. Kaplan and his team have done a masterful job at both understanding the key properties of silk, and applying these insights to a global medical challenge," said NIBIB Director Roderic I. Pettigrew, Ph.D., M.D.

Pettigrew continued, "This is also a wonderful validation of the type of team science we see in our Biotechnology Resource and Development Centers and their ability to combine cutting edge science in a number of fields to a variety of health needs."

Pettigrew also points out that the next step is to test it in the field.

Keeping medications cold from production until they are used in treatment is a costly process, accounting for as much as 80 percent of the price of vaccinations.

The need for a cold chain has been a difficulty for health care providers, aid organizations, scientists and pharmaceutical companies for decades, especially in settings where electricity is limited.

Failures in the chain result in the loss of nearly half of all global vaccines, according to researchers.

In an attempt to solve this problem, Kaplan and his lab have been working extensively with silk films that essentially wrap up the live bioactive molecules present in antibiotics and vaccines.

This protects these essential bioactive elements, and so can greatly extend the shelf-life of the medication. Silk is used because it is a protein polymer with a chemistry, structure, and assembly that can generate a unique environment, making it an attractive candidate for the stabilization of bioactive molecules over extended periods of time.

To test their new silk stabilizers, Kaplan's team stored the measles, mumps, and rubella (MMR) vaccines for six months at the recommended 39.2 degrees Fahrenheit, as well as at 77, 98.6 , and 113 degrees Fahrenheit.

The results show that encapsulation in the new silk films maintained the potency with minimal loss over time and enhanced stability, even at very high storage temperatures.

Similarly, antibiotics entrapped in silk films maintained near optimal activity even at temperatures as high as 140 degrees. In addition, Kaplan's group found that these silk films had the added benefit of protecting one antibiotic against the detrimental effects of light exposure.

The silk stabilizers are likely to combine well with Kaplan's previously developed silk microneedle system. These tiny needles can deliver medication directly to skin cells that contain a specified antigen.

This targeted approach permits administration of lower doses of medication or vaccine and generates longer-lasting immune responses. The combination could prove to be a simple way to stabilize, distribute, and deliver the medication in one system.

Thus, for vaccines and antibiotics, the use of a silk carrier reduces the detrimental effects of heat and humidity.

"New studies are already under way," says Dr. Kaplan. "We have already begun trying to broaden the impact of what we're doing to apply to all vaccines. Based on what we've seen with other proteins, peptides, and enzymes, there's no reason to believe that this wouldn't be universal. This could potentially eliminate the need for a cold-chain system, greatly decreasing costs and enabling more widespread availability of these life-saving drugs."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Monday, July 25, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Promising Experimental Dengue Vaccine
A clinical trial in which volunteers were infected with dengue virus six months after receiving either an experimental dengue vaccine or a placebo injection yielded starkly contrasting results.
Thursday, March 17, 2016
Experimental Ebola Antibody Protects Monkeys
Antibody isolated from Ebola survivor can advance to clinical trials.
Friday, February 26, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
Scientific News
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Antibody-Based Drug for Multiple Sclerosis
New antibody-based drug paves the way for new strategies for controlling and treating multiple sclerosis.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
'Poison Pill' Fed to Deadly Virus
Researchers have created a genetic modification within a virus (with funny name), rendering it unable to replicate, mutate or cause illness.
World First Alzheimer's Vaccine Breakthrough
Researchers have made a breakthrough discovery towards an effective vaccine for Alzheimer's by targeting associated proteins.
Immunotherapy Drug Combo Targets Cancer
Mayo Clinic researchers identify potential immunotherapy drug combination that shows therapeutic effects against advanced and metastatic cancers.
Study Shows Sandoz Biosimilar Equivalent to Originator Drug
New data shows Sandoz biosimilar candidate has equivalent efficacy to originator etanercept following comparison in psoriasis.
Biomunex Confirms Optimal Properties and Activity of BiXAb® Antibodies
Biomunex‘s Plug-and-Play bispecific antibodies demonstrated excellent in vitro properties and in vivo activity positively differentiating their BiXAb platform from competing formats.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!