Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Comparative Medicine Study by Penn Vet Identifies a New Approach to Combat Viral Infections

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
When a virus such as influenza invades our bodies, interferon proteins are among the first immune molecules produced to fight off the attack.

Interferon can also play a role in suppressing tumor growth and the effects of autoimmune diseases, and doctors may use an artificial form of interferon to treat patients with certain cancers or multiple sclerosis. But even this approach sometimes fails when patients’ bodies reject the foreign interferon or growing resistant to its effects.

A study by scientists from the University of Pennsylvania School of Veterinary Medicine offers a new strategy for enhancing the effects of interferon in fighting off infection. The research suggests that, by targeting a particular molecule in the interferon signaling pathway, specially designed drugs may be able to boost the activity of a person’s own interferon, augmenting the immune system’s fight against viruses. It’s possible that the same drugs might also be effective against some types of cancer and certain autoimmune conditions.

Serge Fuchs, a professor of cell biology in Penn Vet’s Department of Animal Biology and director of the School’s Mari Lowe Comparative Oncology Center, was the senior author on the paper published in the Proceedings of the National Academy of Sciences.

“The practical significance of our study is a demonstration of the ability to use emerging pharmaceuticals to reactivate an individual’s own interferon or to use a reduced dose to get the same effect,” Fuchs said.

Christopher Carbone and Hui Zheng of the Department of Animal Biology and John Lewis and Alexander Reiter of the Department of Clinical Studies played leading roles in the study. Additional Penn Vet collaborators were Sabyasachi Bhattacharya, Paula Henthorn and Kendra Bence. Zhong-Yin Zhang of Indiana University School of Medicine and Darren Baker of Biogen Idec also contributed.

The research would have been impossible without the team’s comparative-medicine approach, in which they examined the effects of activating the interferon pathway in both human cells and in cats affected by a naturally occurring disease. Mice would normally be the model organism of choice for such a study, but they lack a molecular element of the interferon pathway that humans and cats share.
“Mice are very convenient, but they may not always recapitulate human diseases that well,” Fuchs said. “Veterinary diseases happen naturally, and they provide a less convenient but a more truthful recapitulation of the human situation.”

Interferon fights viruses by binding to an interferon receptor on cells, triggering a cascade of other molecular events and leading to the production of proteins that prevent viruses from reproducing or that stimulate other immune responses. But because too much interferon can harm the host’s body, this signaling cascade has a built-in brake: Using a separate molecular pathway, interferon triggers the body’s cells to remove its own receptor, so the immune system attack doesn’t go on indefinitely.
“It’s very important to understand what regulates the responsiveness of cells to interferon, and a major factor is the levels of cell-surface receptors,” Fuchs said.

Although the researchers’ investigations of these pathways led them to identify a target for improving the body’s virus-fighting ability, they didn’t set out to discover a drug. Rather, they were attempting to solve a paradox of cell biology.

The paradox rests on the fact that many steps in the interferon-signaling pathway involve adding a molecule of phosphate to proteins in the cascade. Interferon itself promotes the addition of phosphate onto the interferon receptor, yet previous evidence suggested that the receptor resisted being removed by the cell if it had phosphate added. Given that interferon does in fact trigger the removal of its own receptor, the research team hypothesized that another enzyme must be at work in the pathway to remove the phosphate molecule from the receptor so it could be consumed by the body’s cells to ramp down the immune-system response to viruses.

Performing a screening for this putative enzyme, they identified protein tyrosine phosphatase 1 B (PTP1B) as a likely candidate. In a series of experiments, the researchers confirmed that blocking PTP1B decreased the removal of the interferon receptor. As a result, interferon signaling became enhanced. Using human cells infected with hepatitis C, the researchers found that adding a PTP1B inhibitor allowed smaller doses of interferon to be effective in keeping the virus from reproducing. They demonstrated a similar effect in human cells infected with vesicular stomatitis virus.

Aiding in their work was the fact that pharmaceutical companies have already designed multiple drugs that inhibit the activity of PTP1B but for a completely separate reason than the enzyme’s involvement in interferon signaling.

“PTP1B also works on the leptin receptor,” Fuchs said. “This is the pathway that regulates satiety, appetite and weight gain. So in the past 10 years there have been massive industrial and academic undertaking to develop PTP1B inhibitors to treat obesity and diabetes.”

To see how these PTP1B inhibitors would impact viral infections in a living organism, the researchers could not use mice because mice lack a portion of the receptor that PTP1B acts upon, and so blocking PTP1B does not impact interferon signaling in the same way as it does in humans and other mammals. Instead, they examined five cats that had been enrolled by their owners in the study. Each was suffering from chronic stomatitis, a condition that involves substantial inflammation in the mouth and makes it painful for the cats to eat and groom. The cats received a single injection of a PTP1B inhibitor. Two weeks later, all five showed noticeable reductions in redness and inflammation, providing clinical evidence that these drugs could be used to treat infection.

Fuchs said that what seemed like a drawback in the study — that it couldn’t be effectively modeled in mice — ended up being a benefit, as naturally occurring diseases in animals such as cat and dogs more closely mimic many human diseases.

Because interferon is known to suppress tumors and help multiple sclerosis patients, the results of this study give the researchers optimism that PTP1B could be a target for anti-cancer and anti-autoimmune disease therapies.

As a next step, they plan to test the PTP1B inhibitors in a model of feline immunodeficiency virus, or the cat version of AIDS, to see if its virus-fighting capabilities can have an effect against that infection.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Better Animal Model to Improve HIV Vaccine Development
Penn study identifies a new tool to produce better HIV vaccine designs.
Tuesday, June 07, 2016
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
Friday, August 21, 2015
Potential Therapy for Myasthenia Gravis
Penn study demonstrates efficacy of potential therapy for autoimmune disorder of muscle weakness.
Wednesday, October 08, 2014
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Designing Potential AIDS Vaccine Candidates
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anthrax Vaccine Protects Monkeys
Vaccination with the anthrax capsule—a naturally occurring component of the bacterium that causes the disease—completely protected monkeys from lethal anthrax infection, according to a recently published study.
Long-Term Culturing of Adult Stem Cells
A new procedure developed by Harvard Stem Cell Institute researchers (HSCI) at Massachusetts General Hospital (MGH) may revolutionize the culturing of adult stem cells.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
Plant-Based Vaccine Among Front Runners In Search For New Polio Jab
A researcher from Norwich is part of a consortium that has been awarded $1.5 million to develop safer polio vaccines, using a new technique developed at the John Innes Centre.
Harnessing Helpful Microbes
Seeking to further harness microbes’ many uses, the federal government has launched the National Microbiome Initiative (NMI) to “foster the integrated study of microbiomes across different ecosystems.”
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!