Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oxford's Role in New Meningitis Vaccine

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
EMA recommends Novartis' Bexero (MenB) vaccine to protect children against meningitis B.

A vaccine to protect children against meningitis B - the bacterial strain that now causes the vast majority of meningitis cases in this country - could soon be introduced in the UK.

On Friday the European Medicines Agency (EMA) recommended Novartis' Bexero (MenB) vaccine for approval for babies 2 months and up.

The step paves the way for a Europe-wide license for the vaccine, and for national governments to decide whether to include it in childhood immunization programmes.

'As paediatricians we have seen the devastating effect that MenB disease can have on young children and adolescents, so welcome the recommendation for approval for this vaccine as an important step towards the prevention of childhood meningitis,' says Dr Matthew Snape of the Oxford Vaccine Group, who is hopeful that the vaccine can be introduced into the routine immunization schedule in the near future.

Oxford researchers, including Matthew Snape and others, played a significant role in the almost 20 years of work behind the development of the Novartis vaccine, from the early stages to clinical trials, as our earlier news story reported.

Matthew takes up the story: 'Developing a vaccine against MenB infections has been very difficult primarily because, unlike the MenC organism [a strain for which a successful vaccine was introduced in 1999], the outer coating of MenB is not recognized by the immune system.

'Over several decades many different proteins had been studied as vaccine targets without success. To overcome this, Professor Richard Moxon and others developed a novel approach whereby the MenB bacterium's DNA blueprint was used as a tool to find new protein targets,' says Matthew.

Matthew continued, 'This vaccine is a direct result of this work. It represents an entirely new approach to vaccine development, and one that has important implications for developing vaccines against other diseases.'

Professor Moxon of the Department of Paediatrics at Oxford University explains: 'The story of the underpinning science goes back to 1995. This is when the first complete genome sequence of the bacterium Haemophilus influenzae was completed and published.'

This advance opened up the possibility of using the sequenced genomes of other disease-causing bacteria as a new approach to making vaccines, as Richard later outlined in the Lancet.

After all, a complete genome sequence would provide an inventory of all the genes encoding every factor responsible for the virulence of the disease, or that would prompt an immune response in the body. Vaccines that target one or more of these genes could then be developed.

'There already was a H. influenzae (type b) vaccine, so an obvious candidate for using a genomic approach was Neisseria meningitidis (meningococcus),' says Richard, 'and specifically the B strain, since for technical reasons a vaccine for this strain needed a completely new approach from that used for the ultimately successful MenC vaccine.'

Oxford had been one of the main collaborators on the project to sequence the entire DNA of H. influenzae, Richard explains, and he was then in position to persuade Craig Venter - the US scientist pioneering novel DNA sequencing methods at his private research institution, The Institute for Genomic Research - to consider sequencing meningococcus B.

Richard's laboratory in the Department of Paediatrics sent DNA from a B strain of meningococcus to Venter's group at TIGR in 1995. The strain was one isolated from an outbreak of meningitis in Stroud in 1981.

Richard explains that after some preliminary sequencing work began to demonstrate how powerful the genomic approach could be, Chiron Vaccines in Siena, Italy, came in wanting to collaborate and offering serious project funding.

The MenB project was initiated in 1996 involving Chiron (which was later acquired by Novartis), Oxford University and TIGR in Maryland, USA.

'Between 1996 and 2000, the sequencing and analysis of the B strain was carried out and culminated in two back-to-back papers in Science,' says Richard. 'The second of these papers identified a number of candidate vaccine antigens which, after much further research, culminated in formulations that went into clinical trials.

'The Oxford Vaccine Group was a huge player in the clinical trials that resulted in the decision by EMA,' says Richard.

The Oxford Vaccine Group, also in the Department of Paediatrics, has been involved in 7 different clinical trials of the MenB vaccine, enrolling a total of over 1000 participants (over 800 children and more than 250 students). These included the first studies in children which were performed in 2006.

Professor Andrew Pollard, head of the Oxford Vaccine Group, has been the chief investigator for all the studies in children conducted in the UK, and he and Matthew have been closely involved in the design, planning and analysis of results for these studies.

Matthew says: 'The initial paediatric studies conducted in 2006 enrolled 2 month old and 6 month old children to receive one of two formulations of this vaccine. One of these formulations induced a broad immune response against multiple strains of the MenB bacterium, and was therefore taken forward for further assessment in a larger study conducted across five European countries.'

The results from this larger study, in which the Oxford Vaccine Group was again involved, enrolling 400 of the 1800 infant participants, provided data critical to determining how the MenB vaccine might be incorporated into existing child immunization schedules.

So what can we expect from the new MenB vaccine now it's on its way to being licensed? After all the meningitis C vaccine has been enormously successful. There have been only 2 deaths in children and young people under 20 in the last 5 years, compared to 78 deaths in the single year before the vaccine was introduced.

Matthew says: 'Each year between 460 and 860 children and adolescents suffer either meningitis or septicaemia (blood poisoning) due to MenB in England and Wales, with the highest rates being in children below 2 years of age.

'Calculating what proportion of these cases are likely to be prevented by immunization with the MenB vaccine has been a considerable challenge, as the proteins targeted by the MenB vaccine vary between different MenB bacteria. But early estimates are in the region of 75%, which would be an enormous step forward in the goal of preventing childhood meningitis.'

He adds: 'As with all new vaccines, ongoing surveillance is going to be the key to understanding how the vaccine can be employed most effectively. One key question is whether using the vaccine in a large proportion of the population will reduce circulation of the organism in the community, thus providing "herd immunity" to people who have not received the vaccine.'


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
Thursday, July 16, 2015
Oxford Vaccine Group Begins First Trial of New Ebola Vaccine
Oxford University doctors and scientists are starting the first safety trial of an experimental preventative Ebola vaccine regimen being developed by the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen).
Wednesday, January 07, 2015
New Vaccine Generates Strong Immune Response Against Hepatitis C
A new hepatitis C vaccine has shown promising results in an early clinical trial at Oxford University, generating strong and broad immune responses against the virus causing the disease.
Friday, November 07, 2014
Meningitis Mass Vaccination Sees Cases Drop 94%
A mass vaccination campaign in Chad in 2011 reduced all cases of meningitis by 94% and saw no cases of serogroup A meningococcal meningitis detected in 2012.
Monday, September 16, 2013
New Foot-and-Mouth Vaccine is Safer and Cheaper to Produce
A new vaccine against foot-and-mouth disease that is safer to produce and easier to store has been developed by scientists from the University of Oxford and The Pirbright Institute.
Thursday, March 28, 2013
First Trial of a New Hepatitis C Vaccine Shows Promise
A new vaccine against the chronic liver disease hepatitis C has shown promising results in a first clinical trial in humans, Oxford University researchers report.
Thursday, January 05, 2012
Scientific News
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Study Backs Flu Vaccinations for Elderly
Brown University researchers found vaccines well matched to the year’s flu strain significantly reduce deaths and hospitalizations compared to when the match is poor, suggesting that vaccination indeed makes a difference.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!