Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Biologists Engineer Algae to Make Complex Anti-Cancer ‘Designer’ Drug

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Biologists at UC San Diego have succeeded in genetically engineering algae to produce a complex and expensive human therapeutic drug used to treat cancer.

Their achievement, detailed in a paper in this week’s early online issue of The Proceedings of the National Academy of Sciences, opens the door for making these and other “designer” proteins in larger quantities and much more cheaply than can now be made from mammalian cells.

“Because we can make the exact same drug in algae, we have the opportunity to drive down the price down dramatically,” said Stephen Mayfield, a professor of biology at UC San Diego and director of the San Diego Center for Algae Biotechnology or SD-CAB, a consortium of research institutions that is also working to develop new biofuels from algae.

Their method could even be used to make novel complex designer drugs that can’t be produced in any other systems--drugs that could be used to treat cancer or other human diseases in new ways.

“You can’t make these drugs in bacteria, because bacteria are incapable of folding these proteins into these complex, three-dimensional shapes,” said Mayfield. “And you can’t make these proteins in mammalian cells because the toxin would kill them.”

The advance is the culmination of seven years of work in Mayfield’s laboratory to demonstrate that Chlamydomonas reinhardtii, a green alga used widely in biology laboratories as a genetic model organism can produce a wide range of human therapeutic proteins in greater quantity and more cheaply than bacteria or mammalian cells.

Mayfield and his colleagues achieved their first breakthrough five years ago when they demonstrated they could produce a mammalian serum amyloid protein in algae. The following year, they succeeded in getting algae to produce a human antibody protein. In 2010, they demonstrated that more complex proteins—human therapeutic drugs, such as human vascular endothelial growth factor, or VEGF, used to treat patients suffering from pulmonary emphysema—could be produced in algae.

Then in May of this year, Mayfield’s group working with another team headed by Joseph Vinetz from UC San Diego’s School of Medicine, engineered algae to produce an even more complex protein—a new kind of vaccine that, preliminary experiments suggest, could protect billions of people from malaria, one of the world’s most prevalent and debilitating diseases.

“What the development of the malarial vaccine showed us was that algae could produce proteins that were really complex structures, containing lots of disulfide bonds that would still fold into the correct three-dimensional structures,” said Mayfield. “Antibodies were the first sophisticated proteins we made. But the malarial vaccine is complex, with disulfide bonds that are pretty unusual. So once we made that, we were convinced we could make just about anything in algae.”

In their latest development, the scientists genetically engineered algae to produce a complex, three-dimensional protein with two “domains”—one of which contains an antibody, which can home in on and attach to a cancer cell and another domain that contains a toxin that kills the bound cancer cells. Such “fusion proteins” are presently created by pharmaceutical companies in a complex, two-step process by first developing the antibody domain in a Chinese hamster, or CHO, cell. The antibody is purified, then chemically attached to a toxin outside of the cell. Then the final protein is re-purified.

“We have a two-fold advantage over that process,” said Mayfield. “First, we make this as a single protein with the antibody and toxin domains fused together in a single gene, so we only have to purify it one time. And second, because we make this in algae rather than CHO cells, we get an enormous cost advantage on the production of the protein.”

The fusion protein the researchers in his laboratory produced from algae is identical to one that is under development by pharmaceutical companies with a proposed cost of more than $100,000.  This same protein could be produced in algae for a fraction of that price, they report in their paper. And the UCSD researchers—Miller Tran, Christina Van, Dan Barrera and Jack Bui, at the UC San Diego Medical School—confirmed that the compound worked like the more expensive treatment: it homed in on cancer cells and inhibited the development of tumors in laboratory mice.

Mayfield said such a fusion protein could not have been produced in a mammalian CHO cell, because the toxin would have killed it. But because the protein was produced in the algae’s chloroplasts—the part of algal and plant cells where photosynthesis takes place—it did not kill the algae.

“The protein was sequestered inside the chloroplast,” Mayfield said. “And the chloroplast has different proteins from the rest of the cell, and these are not affected by the toxin. If the protein we made were to leak out of the chloroplast, it would have killed the cell. So it’s amazing to think that not one molecule leaked out of the chloroplasts. There are literally thousands of copies of that protein inside the chloroplasts and not one of them leaked out.”

Mayfield said producing this particular fusion protein was fairly straightforward because it involved fusing two domains—one to recognize and bind to cancer cells and another to kill them. But in the future, he suspects this same method could be used to engineer algae to produce more complex proteins with multiple domains.

“Can we string together four or five domains and produce a designer protein in algae with multiple functions that doesn’t exist in nature? I think we can?” he added. “Suppose I want to couple a receptor protein with a series of activator proteins so that I could stimulate bone production or the production of neurons? At some point you can start thinking about medicine the same way we think about assembling a computer, combining different modules with specific purposes. We can produce a protein that has one domain that targets the kind of cell you want to impact, and another domain that specifies what you want the cell to do.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Nanosponge Vaccine Fights MRSA Toxins
Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA could serve as a safe and effective vaccine against this toxin.
Wednesday, December 04, 2013
Potential New Drug for Inflammatory Bowel Disease
Vedolizumab, a new intravenous antibody medication, has shown positive results for treating both Crohn's disease and ulcerative colitis.
Monday, September 02, 2013
Study Finds Potential Medical Uses for Algae
Can scientists rid malaria from the Third World by simply feeding algae genetically engineered with a vaccine?
Monday, April 22, 2013
FDA Names Breast Cancer Drug a Breakthrough Therapy
An experimental drug being investigated for the treatment of advanced breast cancer by researchers at UCLA this week received breakthrough therapy designation from the U.S. FDA.
Monday, April 15, 2013
Antimalarial Drug Launched
Twelve years after a breakthrough discovery in his UC Berkeley laboratory, professor of chemical engineering Jay Keasling is seeing his dream come true.
Friday, April 12, 2013
Engineered Small-Pox Vaccine may Kill Liver Cancer
As part of a multicenter clinical trial, researchers at University of California are evaluating Pexa-Vec (JX-594) to slow the progression of hepatocellular carcinoma (HCC) or liver cancer.
Thursday, April 11, 2013
Immune Cells Cluster and Communicate ‘Like Bees,’ Researcher Says
UCSF study on T-cell behavior sheds light on how vaccines work.
Tuesday, March 19, 2013
Strengthening Proteins with Polymers
Researchers describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities.
Tuesday, May 22, 2012
Scientific News
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos