Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Recently Identified Immune Cells Possible Therapeutic Target for Eczema

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
The increasing incidence of allergic skin diseases have spurred researchers to look for better ways to control these immune system-based disorders.

Atopic dermatitis, more commonly called eczema, now affects 10 to 20 percent of children in the United States and direct health-care costs exceed $3 billion, according to the National Institute of Arthritis and Musculoskeletal and Skin Diseases.  What’s more, up to 50 percent of children with atopic dermatitis will develop other allergic diseases, including asthma, a phenomenon termed the “allergic march,” the gradual acquisition of co-existing allergic diseases.

David Artis, Ph.D., associate professor of Microbiology, and Brian Kim, M.D., clinical instructor of Dermatology, from the Perelman School of Medicine, University of Pennsylvania, have identified a previously unknown critical role for a recently identified immune cell population in the progression of atopic dermatitis. They describe their findings in the latest issue of Science Translational Medicine.

The team found an accumulation of innate lymphoid cells (ILCs) in the active lesions of patients with atopic dermatitis. Using a mouse model of atopic dermatitis they also showed that mouse ILCs contribute to disease progression.  These studies suggest ILCs may be a new therapeutic target in treating the development and severity of atopic dermatitis.

Under the Skin

“Like foot soldiers protecting the skin barrier from onslaught, innate lymphoid cells are present in healthy skin and we would predict that these cells play a role in maintaining normal tissue function and perhaps in protecting against microbes on this barrier,” says Artis. “However, in chronic inflammatory diseases like atopic dermatitis, unchecked innate lymphoid cell responses can promote inflammation.”

Kim adds, “A potential consequence of our more hygienic environment is that immune cells may be left somewhat redundant and so contribute to the increasing incidence of allergic diseases like eczema.”

Many studies before the current one in STM have identified immune pathways that activate ILCs in such other tissues as the intestine and lung. “An unexpected finding of the current study is that innate lymphoid cells in the skin appear to be activated and regulated by different pathways,” says Kim. “These findings suggest that tissue-specific local signals may regulate their function. This finding may also offer therapeutic potential to selectively target innate lymphoid cells in certain tissues, especially for limiting disease severity.”

At present, the first-line therapy for atopic dermatitis remains topical steroids. Unlike other inflammatory diseases like psoriasis and arthritis that can be treated with modern biologic-based therapies, there are no targeted biologic therapies that are approved for use to treat atopic dermatitis.

“Our findings give us hope that new biologic therapies may be designed to treat atopic dermatitis in the future,” says Artis.

These studies are part of a new collaboration between basic scientists in Penn’s Department of Microbiology and Institute for Immunology, along with clinicians at Penn’s Department of Dermatology.  These studies are supported by the National Institutes of Health’s Clinical and Translational Science Award program, which is administered through Penn’s Institute for Translational Medicine and Therapeutics.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Funding for DNA Vaccines to Fight Infectious Disease
DARPA awards $12 million to Penn-led group to develop synthetic DNA vaccines to fight infectious disease.
Wednesday, October 22, 2014
Scientific News
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Study Backs Flu Vaccinations for Elderly
Brown University researchers found vaccines well matched to the year’s flu strain significantly reduce deaths and hospitalizations compared to when the match is poor, suggesting that vaccination indeed makes a difference.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Major Advance Toward More Effective, Long-Lasting Flu Vaccine
Collaboration shows vaccine candidate can produce powerful ‘broadly neutralizing antibodies’ in animal models.
Immune System: Help for Killer Cells
A study from the University of Bonn may show the way to more effective vaccines.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!