Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Recently Identified Immune Cells Possible Therapeutic Target for Eczema

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
The increasing incidence of allergic skin diseases have spurred researchers to look for better ways to control these immune system-based disorders.

Atopic dermatitis, more commonly called eczema, now affects 10 to 20 percent of children in the United States and direct health-care costs exceed $3 billion, according to the National Institute of Arthritis and Musculoskeletal and Skin Diseases.  What’s more, up to 50 percent of children with atopic dermatitis will develop other allergic diseases, including asthma, a phenomenon termed the “allergic march,” the gradual acquisition of co-existing allergic diseases.

David Artis, Ph.D., associate professor of Microbiology, and Brian Kim, M.D., clinical instructor of Dermatology, from the Perelman School of Medicine, University of Pennsylvania, have identified a previously unknown critical role for a recently identified immune cell population in the progression of atopic dermatitis. They describe their findings in the latest issue of Science Translational Medicine.

The team found an accumulation of innate lymphoid cells (ILCs) in the active lesions of patients with atopic dermatitis. Using a mouse model of atopic dermatitis they also showed that mouse ILCs contribute to disease progression.  These studies suggest ILCs may be a new therapeutic target in treating the development and severity of atopic dermatitis.

Under the Skin

“Like foot soldiers protecting the skin barrier from onslaught, innate lymphoid cells are present in healthy skin and we would predict that these cells play a role in maintaining normal tissue function and perhaps in protecting against microbes on this barrier,” says Artis. “However, in chronic inflammatory diseases like atopic dermatitis, unchecked innate lymphoid cell responses can promote inflammation.”

Kim adds, “A potential consequence of our more hygienic environment is that immune cells may be left somewhat redundant and so contribute to the increasing incidence of allergic diseases like eczema.”

Many studies before the current one in STM have identified immune pathways that activate ILCs in such other tissues as the intestine and lung. “An unexpected finding of the current study is that innate lymphoid cells in the skin appear to be activated and regulated by different pathways,” says Kim. “These findings suggest that tissue-specific local signals may regulate their function. This finding may also offer therapeutic potential to selectively target innate lymphoid cells in certain tissues, especially for limiting disease severity.”

At present, the first-line therapy for atopic dermatitis remains topical steroids. Unlike other inflammatory diseases like psoriasis and arthritis that can be treated with modern biologic-based therapies, there are no targeted biologic therapies that are approved for use to treat atopic dermatitis.

“Our findings give us hope that new biologic therapies may be designed to treat atopic dermatitis in the future,” says Artis.

These studies are part of a new collaboration between basic scientists in Penn’s Department of Microbiology and Institute for Immunology, along with clinicians at Penn’s Department of Dermatology.  These studies are supported by the National Institutes of Health’s Clinical and Translational Science Award program, which is administered through Penn’s Institute for Translational Medicine and Therapeutics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Funding for DNA Vaccines to Fight Infectious Disease
DARPA awards $12 million to Penn-led group to develop synthetic DNA vaccines to fight infectious disease.
Wednesday, October 22, 2014
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anthrax Vaccine Protects Monkeys
Vaccination with the anthrax capsule—a naturally occurring component of the bacterium that causes the disease—completely protected monkeys from lethal anthrax infection, according to a recently published study.
Long-Term Culturing of Adult Stem Cells
A new procedure developed by Harvard Stem Cell Institute researchers (HSCI) at Massachusetts General Hospital (MGH) may revolutionize the culturing of adult stem cells.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
Plant-Based Vaccine Among Front Runners In Search For New Polio Jab
A researcher from Norwich is part of a consortium that has been awarded $1.5 million to develop safer polio vaccines, using a new technique developed at the John Innes Centre.
Harnessing Helpful Microbes
Seeking to further harness microbes’ many uses, the federal government has launched the National Microbiome Initiative (NMI) to “foster the integrated study of microbiomes across different ecosystems.”
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Approach to Chemical Synthesis
Communesins, originally found in fungus, could hold potential as cancer drugs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!