Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Recently Identified Immune Cells Possible Therapeutic Target for Eczema

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
The increasing incidence of allergic skin diseases have spurred researchers to look for better ways to control these immune system-based disorders.

Atopic dermatitis, more commonly called eczema, now affects 10 to 20 percent of children in the United States and direct health-care costs exceed $3 billion, according to the National Institute of Arthritis and Musculoskeletal and Skin Diseases.  What’s more, up to 50 percent of children with atopic dermatitis will develop other allergic diseases, including asthma, a phenomenon termed the “allergic march,” the gradual acquisition of co-existing allergic diseases.

David Artis, Ph.D., associate professor of Microbiology, and Brian Kim, M.D., clinical instructor of Dermatology, from the Perelman School of Medicine, University of Pennsylvania, have identified a previously unknown critical role for a recently identified immune cell population in the progression of atopic dermatitis. They describe their findings in the latest issue of Science Translational Medicine.

The team found an accumulation of innate lymphoid cells (ILCs) in the active lesions of patients with atopic dermatitis. Using a mouse model of atopic dermatitis they also showed that mouse ILCs contribute to disease progression.  These studies suggest ILCs may be a new therapeutic target in treating the development and severity of atopic dermatitis.

Under the Skin

“Like foot soldiers protecting the skin barrier from onslaught, innate lymphoid cells are present in healthy skin and we would predict that these cells play a role in maintaining normal tissue function and perhaps in protecting against microbes on this barrier,” says Artis. “However, in chronic inflammatory diseases like atopic dermatitis, unchecked innate lymphoid cell responses can promote inflammation.”

Kim adds, “A potential consequence of our more hygienic environment is that immune cells may be left somewhat redundant and so contribute to the increasing incidence of allergic diseases like eczema.”

Many studies before the current one in STM have identified immune pathways that activate ILCs in such other tissues as the intestine and lung. “An unexpected finding of the current study is that innate lymphoid cells in the skin appear to be activated and regulated by different pathways,” says Kim. “These findings suggest that tissue-specific local signals may regulate their function. This finding may also offer therapeutic potential to selectively target innate lymphoid cells in certain tissues, especially for limiting disease severity.”

At present, the first-line therapy for atopic dermatitis remains topical steroids. Unlike other inflammatory diseases like psoriasis and arthritis that can be treated with modern biologic-based therapies, there are no targeted biologic therapies that are approved for use to treat atopic dermatitis.

“Our findings give us hope that new biologic therapies may be designed to treat atopic dermatitis in the future,” says Artis.

These studies are part of a new collaboration between basic scientists in Penn’s Department of Microbiology and Institute for Immunology, along with clinicians at Penn’s Department of Dermatology.  These studies are supported by the National Institutes of Health’s Clinical and Translational Science Award program, which is administered through Penn’s Institute for Translational Medicine and Therapeutics.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Funding for DNA Vaccines to Fight Infectious Disease
DARPA awards $12 million to Penn-led group to develop synthetic DNA vaccines to fight infectious disease.
Wednesday, October 22, 2014
Scientific News
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
13 Ways to Stop an Unseen Force from Disrupting Weighing
Download a free Mettler Toledo paper to discover how to halt static’s negative effects before the next weigh-in.
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Researchers Discover A New Mechanism of Proteins to Block HIV
Certain IFITM proteins block and inhibit cell-to-cell transmission of HIV.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Vaccination On The Horizon For Severe Viral Infection Of The Brain
Researchers from the University of Zurich and the University Hospital Zurich reveal possible new treatment methods for a rare, usually fatal brain disease.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos