Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researcher Taking Shot at Flu Vaccine That's More Effective, Easier to Make

Published: Monday, February 11, 2013
Last Updated: Monday, February 11, 2013
Bookmark and Share
In the midst of an unusually deadly flu season and armed with a vaccine that only offers partial protection, researcher is working on a flu vaccine that overcomes the need to predict which strains will hit each year.

This year's vaccine is 62 percent effective or "moderately" effective against the current flu strains, according to early estimates from the Centers for Disease Control and Prevention. Flu-related deaths this season have reached an epidemic level and include 45 children, according to the most recent report.

Suresh Mittal, a professor of comparative pathobiology in Purdue's College of Veterinary Medicine, is applying a method he developed for an avian flu vaccine to create a more universal seasonal flu vaccine. The vaccine's protection could persist through different strains and mutations of the influenza virus and would not be dependent on accurate predictions of the strains expected each season, he said.

"This method allows us to create a vaccine that targets core parts of the influenza virus that are found across all strains and don't mutate or change quickly," Mittal said. "It also allows us to target multiple parts of the virus, so that even if the virus adapts to one line of attack, there are others that will still work to prevent the illness."

The method uses a harmless adenovirus as a vector to deliver influenza virus genes into the body where they create a two-fold immune response of antibody and cell-based protection. The adenovirus releases the genes inside the host cells, which then create proteins that lead to the creation of antibodies and special T-cells primed to kill influenza virus and any cells infected by it.

"This method works beyond that of the current vaccine, in which the body responds to inactivated virus proteins injected into a muscle," Mittal said. "Getting the influenza virus genes inside the cells better mimics an infection and leads to a more powerful and multifaceted immune response, so we are better prepared to fend off a true infection."

Any genes important to influenza virus protection can be incorporated into the adenovirus vector, and it can be designed to expose the immune system to components from both the surface and deep within the virus. In this way the immune system can be primed to recognize portions of the virus that are the same across all strains and those that are more difficult for the virus to change as it adapts to the immune system attack, he said.

The new vaccine also has manufacturing advantages over current methods because the vector is easily grown in cell culture. The current flu vaccine depends on the growth of influenza viruses in chicken eggs.

"Sometimes the virus strains selected for the year's vaccine do not grow well in an egg and that can lead to delays or shortages of the vaccine," Mittal said. "The new method depends only on the growth of the virus vector, which we know how to grow quite well. The influenza strains we select to include have no effect on the growth or the amount of vaccine that can be made."

Mittal said vaccination is critical to save lives.

"We don't think of the flu as a killer, but it kills around 35,000 people each year," he said. "Even when the flu vaccine isn't a perfect match, it still offers the best protection. It also is important to get vaccinated to help prevent the spread of the virus to those who are too young or too sick to be vaccinated themselves."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Purdue Researcher's New 'Tool for the Organic Chemist Toolbox' Licensed to Sigma-Aldrich
U.S. patent for a safer, easier and "greener" method to incorporate fluorine into organic compounds has been licensed to a subsidiary of Sigma-Aldrich Corporation.
Friday, May 24, 2013
Bird Flu Expert Working on Vaccine that Protects Against Multiple Strains
As the bird flu outbreak in China worsens, a Purdue University expert is working on vaccines that offer broader protection against multiple strains of the virus.
Friday, May 10, 2013
Discovery Points to New Approach to Fight Dengue Virus
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, suggests new approach for designing vaccines against the aggressive mosquito-borne pathogen.
Monday, April 15, 2013
Scientific News
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
13 Ways to Stop an Unseen Force from Disrupting Weighing
Download a free Mettler Toledo paper to discover how to halt static’s negative effects before the next weigh-in.
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Researchers Discover A New Mechanism of Proteins to Block HIV
Certain IFITM proteins block and inhibit cell-to-cell transmission of HIV.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Vaccination On The Horizon For Severe Viral Infection Of The Brain
Researchers from the University of Zurich and the University Hospital Zurich reveal possible new treatment methods for a rare, usually fatal brain disease.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos