Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Antimalarial Drug Launched

Published: Friday, April 12, 2013
Last Updated: Friday, April 12, 2013
Bookmark and Share
Twelve years after a breakthrough discovery in his UC Berkeley laboratory, professor of chemical engineering Jay Keasling is seeing his dream come true.

On April 11, the pharmaceutical company Sanofi will launch the large-scale production of a partially synthetic version of artemisinin, a chemical critical to making today's front-line antimalaria drug, based on Keasling's discovery.

The drug is the first triumph of the nascent field of synthetic biology and will be, Keasling hopes, a lifesaver for the hundreds of millions of people in developing countries who each year contract malaria and more than 650,000, most of them children, who die of the disease. Synthetic biology involves inserting a dozen or more genes into microbes to make them produce drugs, chemicals or biofuels that they normally would not.

Keasling and colleagues at Amyris, a company he cofounded in 2003 to bring the lab-bench discovery to the marketplace, will publish in the April 25 issue of Nature the sequence of genes they introduced into yeast that allowed Sanofi to make the chemical precursor of artemisinin. The paper became available online April 10.

"It is incredible," says Keasling, who also serves as associate director for biosciences at Lawrence Berkeley National Laboratory and as CEO of the Joint BioEnergy Institute in Emeryville, Calif. "The time scale hasn't been that long, it just seems like a long time. There were many places along the way where it could have failed."

The yeast strain developed by Amyris based on Keasling's initial research and now used by Sanofi produces a chemical precursor of artemisinin, a compound that until now has been extracted from the sweet wormwood plant, Artemsia annua. Artemisinin from either sweet wormwood or the engineered yeast is then turned into the active antimalarial drug artesunate, and typically mixed with another antimalarial drug in what is called arteminsinin combination therapy, or ACT.

Global demand for artemisinin has increased since 2005, when the World Health Organization identified ACTs as the most effective malaria treatment available. Sanofi said that it is committed to producing semisynthetic artemisinin at its new production line in Gerassio, Italy, using a no-profit, no-loss production model, which will help to maintain a low price for developing countries. Though the price of ACTs will vary from product to product, the new source for its key ingredient, in addition to the plant-derived supply, should lead to a stable cost and steady supply, Keasling said.

Key campus support

"This wouldn't have happened without lots of incredible support from the UC Berkeley campus," Keasling adds, noting that the university pushed for royalty-free licensing of the process to Sanofi, which in turn will sell artemisinin at cost. "Some really dedicated people put their careers on the line for it, both at UC Berkeley and at Amyris."The success is due in large part to two grants totaling $53.3 million from the Bill & Melinda Gates Foundation to OneWorld Health, the drug development program for PATH, an international nonprofit organization aiming to transform global health through innovation. OneWorld Health shepherded the drug's development out of Keasling's UC Berkeley lab to Amyris for scale-up and then to pharmaceutical firm Sanofi, based in France, for production.

"With commercial production of semi-synthetic artemisinin underway, we are poised to enable a more stable flow of key antimalarial treatments to those who need them most," says Ponni Subbiah, global program leader for drug development at PATH. "The success of this cross-sector collaboration demonstrates that, with a shared humanitarian goal and the dedication and perseverance of all partners, we can advance science to make a real impact in global health."

"Those three partners working together under a OneWorld Health umbrella has been an amazing collaboration," says Jack Newman, chief science officer of Amyris and a former post-doctoral fellow in Keasling's UC Berkeley lab. "Only through a partnership like that — a research lab, a biotech focused on taking the discovery and turning it into something that's industrializable, and a commercial partner to take it to market — are these types of results possible."

Keasling encourages other companies to license for free their synthetic processes to make artemisinin in order to ensure that needed doses are available worldwide. The yeast strain described in the Nature paper is licensed exclusively to Sanofi.

Ancient Chinese therapy

Sweet wormwood was used in ancient Chinese therapy to treat various illnesses, including fevers typical of malaria. In the 1970s, Chinese scientists rediscovered it and identified its active ingredient, artemisinin, and artemisinin is now extracted from sweet wormwood grown commercially in China, Southeast Asia and Africa. The quality, supply and cost have been unpredictable and inconsistent, however. Keasling's goal was to create a synthetic version with a stable and ideally lower price that could be produced in sufficient quantity to treat the 300- to 500 million cases of malaria that arise each year."The production of semisynthetic artemisinin will help secure part of the world's supply and maintain the cost of this raw material at acceptable levels for public health authorities around the world and ultimately benefit patients," says Dr. Robert Sebbag, vice-president of Access to Medicines at Sanofi. "This is a pivotal milestone in the fight against malaria."

The "semi-synthetic" artemisinin is chemically modified to an active drug, such as artesunate, and combined in ACT with another antimalarial drug to lessen the chance that the malaria parasite will develop resistance to artemisinin. Sanofi plans to produce 35 tons of artemisinin in 2013 and, on average, 50 to 60 tons a year by 2014, which will translate to between 80 and 150 million ACT treatments. Following regulatory approval expected later this year, semisynthetic artemisinin will be ready for rapid integration into the supply chain for antimalarial therapies, according to the company.

"This artemisinin produced by this semisynthetic process will substitute directly for the artemisnin from the plant, so there will be no difference in the final ACT product," Keasling says.

The 12-year tale started in Keasling's Berkeley lab, with the discovery that implanting a combination of wormwood and yeast genes into bacteria made the bacteria produce a chemical that could be chemically converted to artemisinin. Further research turned up another gene in 2006 that, when inserted into yeast with the earlier genes, allowed Keasling and his team to synthesize small amounts of artemisinic acid, which is closer chemically to the actual drug. Using synthetic biology techniques from Keasling's lab, Amyris added that gene to yeast along with other plant genes to boost artemisinic acid production by a factor of 15, good enough to interest Sanofi.

The drug company developed its own proprietary photochemical process to convert artemisinic acid to artemisinin, hence the term semi-synthetic. In the Nature paper, the Amyris researchers describe an alternative, nonproprietary process for achieving the same result.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanosponge Vaccine Fights MRSA Toxins
Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA could serve as a safe and effective vaccine against this toxin.
Wednesday, December 04, 2013
Potential New Drug for Inflammatory Bowel Disease
Vedolizumab, a new intravenous antibody medication, has shown positive results for treating both Crohn's disease and ulcerative colitis.
Monday, September 02, 2013
Study Finds Potential Medical Uses for Algae
Can scientists rid malaria from the Third World by simply feeding algae genetically engineered with a vaccine?
Monday, April 22, 2013
Engineered Small-Pox Vaccine may Kill Liver Cancer
As part of a multicenter clinical trial, researchers at University of California are evaluating Pexa-Vec (JX-594) to slow the progression of hepatocellular carcinoma (HCC) or liver cancer.
Thursday, April 11, 2013
Immune Cells Cluster and Communicate ‘Like Bees,’ Researcher Says
UCSF study on T-cell behavior sheds light on how vaccines work.
Tuesday, March 19, 2013
Biologists Engineer Algae to Make Complex Anti-Cancer ‘Designer’ Drug
Biologists at UC San Diego have succeeded in genetically engineering algae to produce a complex and expensive human therapeutic drug used to treat cancer.
Thursday, December 13, 2012
Strengthening Proteins with Polymers
Researchers describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities.
Tuesday, May 22, 2012
Scientific News
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Lemon Juice and Human Norovirus
Citric acid may prevent the highly contagious norovirus from infecting humans, scientists discovered from the German Cancer Research Center.
Study Backs Flu Vaccinations for Elderly
Brown University researchers found vaccines well matched to the year’s flu strain significantly reduce deaths and hospitalizations compared to when the match is poor, suggesting that vaccination indeed makes a difference.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!