Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome Sequencing Provides Unprecedented Insight into Causes of Pneumococcal Disease

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Technology will allow better surveillance of bacterial populations, understanding of vaccine effectiveness.

A new study led by researchers from Harvard School of Public Health (HSPH) and the Wellcome Trust Sanger Institute in the UK has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine. The study follows how the population of pneumococcal bacteria changed following the introduction of the ‘Prevnar’ conjugate polysaccharide vaccine, which substantially reduced rates of pneumococcal disease across the U.S. The work demonstrates that the technology could be used in the future to monitor the effectiveness of vaccination or antibiotic use against different species of bacterial pathogens, and for characterizing new and emerging threats.

“This gives an unprecedented insight into the bacteria living and transmitting among us,” said co-author William Hanage, associate professor of epidemiology at HSPH. “We can characterize these bugs to an almost unimaginable degree of detail, and in so doing understand better what helps them survive even in the presence of an effective vaccine.”

Pneumococcal disease is caused by a type of bacteria called Streptococcus pneumoniae, which is present in many people’s noses and throats and is spread by coughing, sneezing, or other contact with respiratory secretions. The circumstances that cause it to become pathogenic are not fully understood. Rates of pneumococcal disease—an infection that can lead to pneumonia, meningitis, and other illnesses—dropped in young children following the introduction of a vaccine in 2000. However, strains of the bacteria that are not targeted by the vaccine rapidly increased and drug resistance appears to be on the rise.

The research, led by HSPH co-senior authors Hanage; Marc Lipsitch, professor of epidemiology; and Stephen Bentley, senior scientist at the Wellcome Trust Sanger Institute, aimed to better understand the bacterial population’s response to vaccination. Whole genome sequencing—which reveals the DNA code for each bacterial strain to an unprecedented level of detail—was used to study a sample of 616 pneumococci collected in Massachusetts communities from 2001 to 2007.

This study confirmed that the parts of the bacterial population targeted by the vaccine have almost disappeared, and, surprisingly, revealed that they have been replaced by pre-existing rare types of bacteria. The genetic composition of the new population is very similar to the original one, except for a few genes that were directly affected by the vaccine. This small genetic alteration appears to be responsible for the large reduction in the rates of pneumococcal disease.

“The widespread use of whole genome sequencing will allow better surveillance of bacterial populations — even those that are genetically diverse — and improve understanding of their evolution,” said Lipsitch. “In this study, we were even able to see how quickly these bacteria transmit between different regions within Massachusetts and identify genes associated with bacteria in children of different ages.”

“In the future, we will be able to monitor evolutionary changes in real-time. If we can more quickly and precisely trace the emergence of disease-causing bacteria, we may be able to better target interventions to limit the burden of disease,” said Bentley.

Support for the study was provided by the National Institutes of Health, the Wellcome Trust, and the AXA Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Monday, October 05, 2015
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
Thursday, October 01, 2015
Why MS Symptoms May Improve As Days Get Shorter
New research from Brigham and Women’s Hospital offers an answer to ‘seasonal paradox’.
Monday, September 14, 2015
Delivering Hope in Ovarian Cancer
Gene therapy blocked chemoresistant tumor growth in mice.
Tuesday, August 11, 2015
Cancer Vaccine Begins Phase I Clinical Trials
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.
Wednesday, September 11, 2013
Scientific News
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
Progress In Vaccination Against Vespid Venom
Researchers at the Helmholtz Zentrum München and the Technical University Munich have presented a method which facilitates a personalised procedure for wasp allergy sufferers.
FINCH Filgotinib Phase 3 Program Initiated
Galapagos NV reports the initiation of the FINCH global Phase 3 program in rheumatoid arthritis patient populations.
New Method of Cancer Immunotherapy
Stanford chemists have dicovered a new form of cancer immunotherapy using sugar presence manipulation.
Vortex Ring Freezing Applications
Accidental lab discovery could aid cell delivery and cell-free protein production.
Examining Immune Memory
Researchers investigate the 'storage/research for the future' functions of antibodies and understanding of B cells.
Expanding the Stable of Workhorse Yeasts
New genome sequences target the next generation of yeasts with improved biotechnology uses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Blocking the Migration of Cancer Cells to Destroy Them
Scientists in Geneva developed an antibody able to fight off lymphomas.
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!