Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Create New Tool for Identifying Powerful HIV Antibodies

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
It is believed that this latest advance could speed HIV vaccine research.

A team of NIH scientists has developed a new tool to identify broadly neutralizing antibodies (bNAbs) capable of preventing infection by the majority of HIV strains found around the globe, an advance that could help speed HIV vaccine research. Scientists have long studied HIV-infected individuals whose blood shows powerful neutralization activity because understanding how HIV bNAbs develop and attack the virus can yield clues for HIV vaccine design. But until now, available methods for analyzing blood samples did not easily yield specific information about the HIV bNAbs present or the parts of the virus they targeted. In addition, determining where and how HIV bNAbs bind to the virus has been a laborious process involving several complicated techniques and relatively large quantities of blood from individual donors.

The new tool lets scientists determine precisely the HIV bNAbs present in a particular blood sample by analyzing the neutralized HIV strains there. Called neutralization fingerprinting, the tool is a mathematical algorithm (a problem-solving procedure) that exploits the large body of data on HIV bNAbs generated in recent years. The neutralization fingerprint of an HIV antibody is a measurement of which virus strains it can block and with what intensity. Antibodies that target the same portion of the virus tend to have similar fingerprints.

Blood samples contain mixtures of antibodies, so the new algorithm calculates the specific types of HIV bNAbs present and the proportion of each by comparing the blood’s neutralization data with the fingerprints of known HIV bNAbs. This approach is particularly useful when other methods of determining bNAbs targets in a blood sample are not feasible, such as when just a small amount of blood is available. Neutralization fingerprinting also is significantly faster than older analytic methods. According to the researchers who developed the assay, the underlying approach could be applied to the study of human responses to other pathogens, such as influenza and hepatitis C viruses, for which scientists have much information about neutralizing antibodies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Promising Experimental Dengue Vaccine
A clinical trial in which volunteers were infected with dengue virus six months after receiving either an experimental dengue vaccine or a placebo injection yielded starkly contrasting results.
Thursday, March 17, 2016
Experimental Ebola Antibody Protects Monkeys
Antibody isolated from Ebola survivor can advance to clinical trials.
Friday, February 26, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Thursday, August 27, 2015
Large Percentage of Youth with HIV May Lack Immunity to Measles, Mumps, Rubella
NIH study finds those vaccinated before starting modern HIV therapy may be at risk.
Tuesday, August 18, 2015
Scientific News
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
New Model to Enhance Zika Virus Research
The model will allow researchers to better understand how the virus causes disease and aid in the development of antiviral compounds and vaccines.
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
BMS’s Opdivo Clinical Trial Shows Promise
Safety profile of the combination regimen from CheckMate -069 was consistent with previously reported studies and adverse events were managed using established safety algorithms.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!