Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Way to Improve Antibiotic Production

Published: Tuesday, June 18, 2013
Last Updated: Tuesday, June 18, 2013
Bookmark and Share
A discovery has been made which could make it easier to scale up antibiotic production for commercialisation.

Scientists Dr Emma Sherwood and Professor Mervyn Bibb from the John Innes Centre (JIC) were able to use their discovery of how the antibiotic is naturally produced to markedly increase the level of production. Their findings have been published in PNAS.

"We have shown for the first time that an antibiotic with clinical potential can act as signalling molecule to trigger its own synthesis," said Professor Bibb.

The antibiotic called planosporicin is produced by a soil bacterium called Planomonospora alba. When nutrients become limited, a small amount of the antibiotic is produced. The antibiotic is then able to trigger a mechanism which coordinates its own production throughout the bacterial population resulting in high levels.

"A frequent stumbling block in developing a natural product for commercialisation is being able to provide enough material for clinical trials," said Professor Bibb.

"Our work shows with the right understanding it is possible to increase productivity very dramatically in a targeted and knowledge-based manner."

With knowledge of this signalling mechanism in hand, the scientists were able to increase production by overexpressing two positively acting regulatory genesand deleting one that acts negatively. Planosporicin is similar to the antibiotic NAI-107 that is about to enter clinical trials for Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) infections. The knowledge gained from this study is being used to increase NAI-107 production.

Commercial manufacturers of antibiotics may be able to use the results to reduce production times and therefore reduce costs. Bacteria often have to be grown for days and sometimes weeks before they start to make effective amounts of an antibiotic. Sherwood and Bibb were able to trigger production essentially from the beginning of growth.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BBSRC is Major Partner in Europe-wide Synthetic Biology Funding
BBSRC is contributing €3M as a major partner in a new call for research projects in Synthetic Biology.
Tuesday, May 14, 2013
H7N9: A Novel Influenza Virus and it’s Control
Whilst the virus remains as one primarily circulating in birds, breaking this cycle of replication is the only effective response to its control.
Thursday, May 09, 2013
BBSRC Supports Call for Multi-Disciplinary Research Centres in Synthetic Biology
Up to six centres will be funded in two phases; three in this financial year and three next financial year.
Friday, May 03, 2013
Vaccine Production in Plants Nets Scientist Innovator of the Year 2012
Innovation could allow quicker vaccine development to combat pandemics.
Friday, March 30, 2012
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Long-Term Culturing of Adult Stem Cells
A new procedure developed by Harvard Stem Cell Institute researchers (HSCI) at Massachusetts General Hospital (MGH) may revolutionize the culturing of adult stem cells.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
Plant-Based Vaccine Among Front Runners In Search For New Polio Jab
A researcher from Norwich is part of a consortium that has been awarded $1.5 million to develop safer polio vaccines, using a new technique developed at the John Innes Centre.
Harnessing Helpful Microbes
Seeking to further harness microbes’ many uses, the federal government has launched the National Microbiome Initiative (NMI) to “foster the integrated study of microbiomes across different ecosystems.”
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Approach to Chemical Synthesis
Communesins, originally found in fungus, could hold potential as cancer drugs.
Better Animal Model to Improve HIV Vaccine Development
Penn study identifies a new tool to produce better HIV vaccine designs.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!