Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers at UT Southwestern Identify Novel Class of Drugs for Prostate Cancers

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers found that they could disrupt androgen receptor signaling using peptidomimetics.

A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

In men with advanced prostate cancer, growth of cancer cells depends on androgen receptor signaling, which is driven by androgens, such as testosterone.

To thwart tumor growth, most patients with advanced prostate cancer receive drugs that block the production of androgen or block the receptor where the androgen binds.

Unfortunately, such treatments invariably fail and patients die of prostate cancer with their androgen receptor signaling still active and still promoting tumor growth.

In the new study, available online at Nature Communications, a team of researchers led by Dr. Ganesh Raj, associate professor of urology at UT Southwestern, found that they could disrupt androgen receptor signaling using a novel class of drugs called peptidomimetics.

This therapeutic agent consists of an engineered small protein-like chain designed to mimic peptides that are critical for androgen receptor function.

The peptidomimetic agents block the activity of the androgen receptor even in the presence of androgen by attacking the protein in a different spot from where the androgen binds.

“We are hopeful that this novel class of drugs will shut down androgen receptor signaling and lead to added options and increased longevity for men with advanced prostate cancer,” said Dr. Raj, the senior author of the study.

Dr. Raj compared the action that takes place to a lock and key mechanism. In prostate cancer, the androgen receptor (lock) is activated by the androgen (key) resulting in a signal that causes prostate cancer proliferation.

In advanced prostate cancer, despite drugs targeting either the lock (androgen receptor) or the key (androgen production), there can be aberrant keys that open the lock or mutated locks that are always open, resulting in cancer cell proliferation.

Instead of trying to block the lock or the key, peptidomimetics uncouple the lock and key mechanism from the proliferation signal. Thus, even with the androgen receptor activated, the prostate cancer cells do not receive the signal to proliferate and do not grow.

The researchers tested their drug in mouse and human tissue models. The novel drug proved non-toxic and prevented androgen receptor signaling in cancer cells.

The response is highly promising and suggests that peptidomimetic targeting of prostate cancer may be a viable therapeutic approach for men with advanced disease.

Further testing is needed before a drug could move to Phase 1 clinical trials that involve human participants.

“Most drugs now available to treat advanced prostate cancer improve survival rates by three or four months,” Dr. Raj said. “Our new agents may offer hope for men who fail with the current drugs.”

These findings represent the development of a first-in-class agent targeting critical interactions between proteins. Other cellular and disease processes eventually could also be targeted with peptidomimetics, the scientists said.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Tuesday, February 09, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
The Power Of Orthogonality In Assessing The Stability Of Biopharmaceuticals
By utilizing orthogonal techniques, researchers can maximize the secure application of all analytical results generated.
Dysfunction in Neuronal Transport Mechanism Linked to Alzheimer’s
Findings confirm mutation-caused problem but also reveal a new therapeutic target.
New Antibody Therapy Permanently Blocks SIV Infection
An international research team has developed an effective treatment strategy against the HIV-like Simian Immunodeficiency Virus (SIV) in rhesus macaques.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Rare Flu-Thwarting Mutation Discovered
Study finds protein mutation, that is encoded by influenza, causes the virus to lose any defence against the immune system.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos