Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Possible Goal for New Tuberculosis-Vaccine Identified

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
A new study shows for the first time the essential role of the molecule SOCS3 in the control of Tuberculosis.

This could have impact on the future development of a vaccine.

Tuberculosis is sometimes perceived as a feared killer of the past but is still a dreadful disease of mankind. One third of the world population is infected with the bacteria Mycobacterium tuberculosis that causes the disease. However, Tuberculosis is manifested only in approximately 10 percent of those infected. Still, about 2 million Tuberculosis patients die every year worldwide.

Mycobacterium tuberculosis multiplies inside white blood cells known as macrophages. In infected people who don't develop the Tuberculosis, the immune system either the bacteria or impairs bacterial multiplication. The exact mechanisms behind this are not known in detail, hampering the development of effective vaccines and treatments of the disease. Why the disease is manifested in some individual, but not in others, is not completely understood.

The recent study shows that a molecule called SOCS3 is required for control of the infection. The discovery was done using an experimental infection of mice genetically modified so that they do not express SOCS3 in different immune cells. These mice were dramatically susceptible to the infection with Mycobacterium tuberculosis.

"Like a soldier with two guns the molecule SOCS3 engages in different ways in the combat against Mycobacterium tuberculosis. We were stunned by the fact that the same molecule independently controls diverse mechanisms in different cell types," says Martin Rottenberg, from the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet.

The control of Tuberculosis is hampered by the appearance of antibiotic-resistant strains. Moreover, the Tuberculosis vaccine, developed almost 100 years ago, shows low efficiency against the most common pulmonary disease. An improved understanding of how our immune responses control the infection might be used for the design of new vaccines.

"We speculate that SOCS3 could be a new target for vaccines to improve the protection against Tuberculosis," says Martin Rottenberg.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New European Vaccine Initiative
Leading organisations have joined forces to rapidly assess and communicate the benefits and risks of vaccines.
Tuesday, November 26, 2013
New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
Possible New Therapy for the Treatment of a Common Blood Cancer
Research from Karolinska Institutet shows that sorafenib, a drug used for advanced cancer of the kidneys and liver, could also be effective against multiple myeloma.
Friday, September 07, 2012
Scientific News
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
Novel Stem Cell Line Avoids Risk of Introducing Transplanted Tumors
Progenitor cells might eventually be used to repair or rebuild damaged or destroyed organs.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos