Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Leads to Alzheimer's Breakthrough

Published: Thursday, October 10, 2013
Last Updated: Thursday, October 10, 2013
Bookmark and Share
Researchers at the Medical Research Council Toxicology Unit have used an orally-administered compound to block a major pathway leading to brain cell death in mice, preventing neurodegeneration.

The team had found previously that the build up of misfolded proteins in the brains of mice with prion disease over-activates a natural defence mechanism in cells, which switches off the production of new proteins. This mechanism would normally switch back ‘on’ again, but in these mice the continued build-up of misshapen protein keeps the switch turned ‘off’. This is the trigger point leading to brain cell death, as the key proteins essential for nerve cell survival stop being made. 

Originally, the team injected a protein that blocked the ‘off’ switch of the pathway into a small region of the brain, and by doing this were able to restore protein production, and halt the neurodegeneration. The brain cells were protected, and protein levels and synaptic transmission (the way in which brain cells signal to each other) were restored allowing the mice to live longer. This led the scientists to predict that compounds able to block this pathway would also protect brain cells.

In the new study, published in Science Translational Medicine, the researchers gave by mouth a drug-like compound against the pathway to prion infected mice, hoping to block the off-switch in the same way.  The compound, which had originally been developed by GlaxoSmithKline for a different purpose, was able to enter the brain from the bloodstream and halt the disease, throughout the whole brain. However, this compound, despite protecting the brain, also produced weight loss in the mice and mild diabetes, due to damage to the pancreas.*

The researchers studied mice with prion disease because these mouse models currently provide the best animal representation of human neurodegenerative disorders in which the build up of misshapen proteins is linked with brain cell death.  These include Alzheimer’s and Parkinson’s as well as prion diseases.  Another paper in Nature Neuroscience last month highlighted this pathway as a potential therapeutic target in treating Alzheimer’s.

Professor Giovanna Mallucci, who led the team, said, “Our previous study predicted that this pathway could be a target for treatment to protect brain cells in neurodegenerative disease.  So we administered a compound that blocks it to mice with prion disease. We were extremely excited when we saw the treatment stop the disease in its tracks and protect brain cells, restoring some normal behaviours and preventing memory loss in the mice.

“We’re still a long way from a usable drug for humans – this compound had serious side effects. But the fact that we have established that this pathway can be manipulated to protect against brain cell loss first with genetic tools and now with a compound, means that developing drug treatments targeting this pathway for prion and other neurodegenerative diseases is now a real possibility.”

Professor Hugh Perry, chair of the Medical Research Council's Neuroscience and Mental Health Board, said, “Misshapen proteins in prion diseases and other human neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, also over-activate this fundamental pathway controlling protein synthesis in the brains of patients. Despite the toxicity of the compound used, this study indicates that, in mice at least, we now have proof-of-principle of a therapeutic pathway that can be targeted. This might eventually aid the development of drugs to treat people suffering from dementias and other devastating neurodegenerative diseases.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
£93 Million Package of Support Announced for UK’s Health Industries
Innovative business and academic projects will benefit from a new £93.2 million package of support.
Wednesday, July 31, 2013
MRC and AstraZeneca Scoop Prestigious SCRIP Award
The innovative collaboration between the Medical Research Council and AstraZeneca has won the ‘Best Partnership Alliance’ award at the annual SCRIP Awards.
Tuesday, December 04, 2012
Scientific News
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
New Model to Enhance Zika Virus Research
The model will allow researchers to better understand how the virus causes disease and aid in the development of antiviral compounds and vaccines.
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
BMS’s Opdivo Clinical Trial Shows Promise
Safety profile of the combination regimen from CheckMate -069 was consistent with previously reported studies and adverse events were managed using established safety algorithms.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!