Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Inovio Pharmaceutical's DNA Vaccine for the MERS Virus Induces Robust Immune Response

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
No vaccine exists for the MERS virus that has killed 42% of those infected.

Inovio Pharmaceuticals, Inc. announced that preclinical testing of a DNA synthetic vaccine for the virulent Middle East Respiratory Syndrome coronavirus (MERS) induced robust and durable immune responses, demonstrating the potential for a SynCon® DNA vaccine to prevent and treat this deadly virus.

Since 2012, when the virus was first identified, 153 cases from nine Middle Eastern countries have been reported and, alarmingly, 42% of these cases have been fatal. MERS is similar to the SARS virus which infected 8,000 people several years ago. MERS differs from SARS in that it appears to be less contagious, but MERS is almost five times as fatal as SARS, which killed 10% of those infected. There is no vaccine or effective treatment for MERS.

In this study, DNA vaccine constructs targeting multiple MERS antigens were generated using Inovio's SynCon® vaccine platform. These SynCon constructs were administered via Inovio's CELLECTRA® electroporation-based delivery technology. The vaccine constructs were observed to induce strong neutralizing antibodies and broad CD8+ T cells in mice. These findings are vital given the importance of neutralizing antibodies in preventing infection and the role T cells play in clearing infection by killing cells that harbor the virus.

Dr. J. Joseph Kim, Inovio's President and CEO, said, "Our SynCon® platform has again generated a synthetic vaccine candidate that shows promise for providing a treatment where there is none. With human data showing the powerful killing effect of T cells generated by our vaccine for HIV and our therapy for HPV-associated cervical dysplasia and various cancers, we look forward to providing Inovio's answer to MERS, a deadly infectious disease that has unknown pandemic potential. What's even more impressive about our candidate vaccine is that it is designed with the goal to universally protect against multiple strains of MERS, which has been shown to have diverse genetic variants. With appropriate external funding, this product could become an effective shield against this deadly virus."

To begin the study, a consensus MERS "spike" protein vaccine construct was created based on multiple strains of the MERS virus.  Inovio's MERS DNA vaccine was immunogenic in mice and seroconversion, or the development of detectable specific antibodies in the blood as a result of immunization, was observed in all animals. Furthermore, the antibodies generated by the vaccine in 100% of mice (20 of 20) were able to neutralize or completely block actual infection of MERS virus in the cells, demonstrating the protective potential of this vaccine. In contrast, none of the unvaccinated mice in the control group (10) generated neutralizing antibodies.

Researchers also observed that vaccination was highly T-cell immunogenic, generating robust and broad T cell responses as extensively analyzed by the standardized T cell ELISPOT assay. The vaccine produced robust CD8+ and CD4+ T cell responses against multiple epitopes of the MERS spike protein. This increased diversity and magnitude of cellular responses may be critical for effectively mitigating MERS infection.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Inovio Pharmaceuticals' Potent hTERT DNA Cancer Vaccine Shows Potential to Reduce Tumors and Prevent Tumor Recurrence
Mice and monkey study demonstrates robust and broad immune responses.
Thursday, July 25, 2013
Inovio Pharmaceuticals & U.S. Army Receive $3.5 Million Biodefense Grant
Inovio to advance painless device to simultaneously deliver multiple vaccines using electroporation technology.
Thursday, April 11, 2013
PATH Malaria Vaccine Initiative and Inovio Pharmaceuticals Partner
Follow-on agreement will lead to clinical trials.
Wednesday, January 09, 2013
Inovio Pharmaceuticals CMV Synthetic Vaccine Constructs Generate Strong and Broad T-Cell Responses in Preclinical Study
No vaccine or cure exists for virus that can be life threatening to infants, immune compromised, and transplant patients.
Wednesday, November 28, 2012
Scientific News
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Ferring Bets on Bacteriophages to Treat Inflammatory Bowel Disease
Ferring Pharmaceuticals have annoucned that it will collaborate with Intralytix in the latest phase of its early stage development programme for a bacteriophage-based therapy for inflammatory bowel disease (IBD).
A Novel Drug to FIght Malaria
An international team of scientists has announced that a new compound to fight malaria is ready for human trials.
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
New Cell Structure Finding Might Lead to Novel Cancer Therapies
University of Warwick scientists in the U.K. say they have discovered a cell structure which could help researchers understand why some cancers develop.
Cancer Discovery Links Experimental Vaccine and Biological Treatment
A new study at the University of Wisconsin-Madison has linked two seemingly unrelated cancer treatments that are both now being tested in clinical trials.
Study Reveals New Method to Develop More Efficient Drugs
A new study suggests a new approach to develop highly-potent drugs which could overcome current shortcomings of low drug efficacy and multi-drug resistance in the treatment of cancer as well as viral and bacterial infections.
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!