Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nanosponge Vaccine Fights MRSA Toxins

Published: Wednesday, December 04, 2013
Last Updated: Wednesday, December 04, 2013
Bookmark and Share
Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA could serve as a safe and effective vaccine against this toxin.

This “nanosponge vaccine” enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSA — both within the bloodstream and on the skin. Nanoengineers from the University of California, San Diego described the safety and efficacy of this nanosponge vaccine in the Dec. 1 issue of Nature Nanotechnology.

The nanosponges at the foundation of the experimental “toxoid vaccine” platform are bio-compatible particles made of a polymer core wrapped in a red-blood-cell membrane. Each nanosponge’s red-blood-cell membrane seizes and detains the Staphylococcus aureus (staph) toxin alpha-haemolysin without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice.

Toxoid vaccines protect against a toxin or set of toxins, rather than the organism that produces the toxin(s). As the problem of antibiotic resistance worsens, toxoid vaccines offer a promising approach to fight infections without reliance on antibiotics.

“With our toxoid vaccine, we don’t have to worry about antibiotic resistance. We directly target the alpha-haemolysin toxin,” said Liangfang Zhang, a nanoengineering professor at UC San Diego Jacobs School of Engineering and the senior author on the paper.

Targeting the alpha-haemolysin toxin directly has another perk. “These toxins create a toxic environment that serves as a defense mechanism which makes it harder for the immune system to fight Staph bacteria,” explained Zhang.

Beyond MRSA and other staph infections, the nanosponge vaccine approach could be used to create vaccines that protect against a wide range of toxins, including those produced by E. coli and H. pylori.

This work from Zhang’s Nanomaterials and Nanomedicine Laboratory at the UC San Diego included nanoengineering post-doctoral researcher Che-Ming “Jack” Hu, nanoengineering graduate student Ronnie Fang, and bioengineering graduate student Brian Luk.

The researchers found that their nanosponge vaccine was safe and more effective than toxoid vaccines made from heat-treated staph toxin. After one injection, just 10 percent of staph-infected mice treated with the heated version survived, compared to 50 percent for those who received the nanosponge vaccine. With two more booster shots, survival rates with the nanosponge vaccine were up to 100 percent, compared to 90 percent with the heat-treated toxin.

“The nanosponge vaccine was also able to completely prevent the toxin’s damages in the skin, where MRSA infections frequently take place,” said Zhang, who is also affiliated with the Moores Cancer Center at UC San Diego.

Fighting Pore-Forming Toxins

This work is a twist on a project the UC San Diego nanoengineers presented earlier this year: a nanosponge that can sop up a variety of pore-forming toxins—from bacterial proteins to snake venom—in the body.

Pore-forming toxins work by punching holes in a cell’s membrane and letting the cell essentially leak to death. But when toxins attack the red blood cell membrane draped over the nanoparticle, “nothing will happen. It just locks the toxin there,” Zhang explained.

The nanoengineers wondered what would happen if they loaded one of their nanosponges with staph toxin in this way, and presented the whole package to an essential part of the immune system called dendritic cells. Could the loaded particles trigger an immune response and work as a toxoid vaccine?

Staph toxin is so powerful that it kills immune cells in its unaltered form. Most vaccine candidates, therefore, use a heat or chemically processed version of the toxin that unravels some of its proteins and makes it a little weaker. But this process also makes the immune response to the toxin a little weaker.

“The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein,” Zhang explained. “And this structure is what the immune cell recognizes, and builds its antibodies against.”

The nanosponge toxoid vaccine gets around this problem by detaining—but not changing—the staph toxin. Like a dangerous but handcuffed prisoner, the staph toxin can be led to the dendritic cells of the immune system without causing any harm.

Before this, “there was no way you could deliver a native toxin to the immune cells without damaging the cells,” Zhang said. “But this technology allows us to do this.”

Each vaccine particle is approximately 85 nanometers in diameter; for comparison, about 1000 of them would fit across the width of a single human hair. They are cleared from the body after injection in about two weeks, the researchers found.

Staphylococcus aureus

Staph bacteria are one of the most common causes of skin infections, and can cause blood poisoning and surgical infections as well as pneumonia. According to the U.S. Centers for Disease Control and Prevention, about 80,000 Americans suffer from invasive MRSA infections each year, and over 11,000 of those individuals die. At the moment, there are no vaccines approved to protect humans against the toxins associated with staph infections, including those caused by MRSA strains.

The idea for a staph vaccine came about when the researchers considered the success of their nanosponge. If the particle was so good at collecting toxins, they wondered, what were the potential uses of a particle full of toxin? “To be honest, we never thought about the vaccine use from the beginning,” Zhang noted. “But when we do research, we always want to look at a problem in reverse.”

In a way, the toxoid vaccine hearkens back to their first use for the particles, as a cancer drug delivery device, Zhang noted.

The particles “work so beautifully,” Zhang said, that it might be possible to detain several toxins at once on them, creating “one vaccine against many types of pore-forming toxins,” from staph to snake venom.

The research was funded by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (award no. R01DK095168) and by the National Science Foundation (grant DMR-1216461).

“Nanoparticle-detained toxins for safe and effective vaccination,” by Che-Ming J. Hu, Ronnie H. Fang and Liangfang Zhang in the Department of NanoEngineering at the University of California, San Diego; and Brian T. Luk in the Department of Bioengineering at the University of California, San Diego.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Potential New Drug for Inflammatory Bowel Disease
Vedolizumab, a new intravenous antibody medication, has shown positive results for treating both Crohn's disease and ulcerative colitis.
Monday, September 02, 2013
Study Finds Potential Medical Uses for Algae
Can scientists rid malaria from the Third World by simply feeding algae genetically engineered with a vaccine?
Monday, April 22, 2013
FDA Names Breast Cancer Drug a Breakthrough Therapy
An experimental drug being investigated for the treatment of advanced breast cancer by researchers at UCLA this week received breakthrough therapy designation from the U.S. FDA.
Monday, April 15, 2013
Antimalarial Drug Launched
Twelve years after a breakthrough discovery in his UC Berkeley laboratory, professor of chemical engineering Jay Keasling is seeing his dream come true.
Friday, April 12, 2013
Engineered Small-Pox Vaccine may Kill Liver Cancer
As part of a multicenter clinical trial, researchers at University of California are evaluating Pexa-Vec (JX-594) to slow the progression of hepatocellular carcinoma (HCC) or liver cancer.
Thursday, April 11, 2013
Immune Cells Cluster and Communicate ‘Like Bees,’ Researcher Says
UCSF study on T-cell behavior sheds light on how vaccines work.
Tuesday, March 19, 2013
Biologists Engineer Algae to Make Complex Anti-Cancer ‘Designer’ Drug
Biologists at UC San Diego have succeeded in genetically engineering algae to produce a complex and expensive human therapeutic drug used to treat cancer.
Thursday, December 13, 2012
Strengthening Proteins with Polymers
Researchers describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities.
Tuesday, May 22, 2012
Scientific News
Antibody-Based Drug for Multiple Sclerosis
New antibody-based drug paves the way for new strategies for controlling and treating multiple sclerosis.
Structure of Cold Virus Solved
Researchers have identified the structure of an elusive cold virus linked to child asthma and respiratory infections, providing the foundation for treating the virus.
'Poison Pill' Fed to Deadly Virus
Researchers have created a genetic modification within a virus (with funny name), rendering it unable to replicate, mutate or cause illness.
World First Alzheimer's Vaccine Breakthrough
Researchers have made a breakthrough discovery towards an effective vaccine for Alzheimer's by targeting associated proteins.
Immunotherapy Drug Combo Targets Cancer
Mayo Clinic researchers identify potential immunotherapy drug combination that shows therapeutic effects against advanced and metastatic cancers.
Study Shows Sandoz Biosimilar Equivalent to Originator Drug
New data shows Sandoz biosimilar candidate has equivalent efficacy to originator etanercept following comparison in psoriasis.
Biomunex Confirms Optimal Properties and Activity of BiXAb® Antibodies
Biomunex‘s Plug-and-Play bispecific antibodies demonstrated excellent in vitro properties and in vivo activity positively differentiating their BiXAb platform from competing formats.
Immunotherapy Reduces Rheumatoid-Linked Cardiovascular Risk
Study shows combination of two extra-low dose anticytokines reduces disease activity and cardiovascular events.
Viable HIV Vaccine Confirmed by Study
HIV Study in macaques confirms clinically viable vaccine opening the way for future treatment in humans.
Sanofi Working on Zika Vaccine with U.S. Army
Sanofi is working in conjunction with the U.S. Army to develop possible Zika vaccine at faster rate following research agreement.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!