Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Drug Testing without the Pain at Queen’s

Published: Wednesday, December 04, 2013
Last Updated: Wednesday, December 04, 2013
Bookmark and Share
Microneedles on a sticking-plaster-like patch may be the painless and safe way doctors will test for drugs and some infections in the future.

Samples of the rough, absorbent patches are being tested in the laboratories at Queen’s by award-winning researcher, Dr Ryan Donnelly.

The experiments are showing that the forest of tiny polymer needles on the underside of the patch, when pressed into the skin, can absorb the fluid in the surface tissue, taking up at the same time the salts, fatty acids and other biological molecules found there as well.

“The important thing is that we typically find the same compounds in this interstitial fluid as you would find in the blood,” Dr Donnelly explains. “But, compared with drawing blood, our patches can get their samples in a minimally invasive way. And it’s far safer than using a conventional needle. These microneedles, once they have been used, become softened, so that there’s no danger of dirty needles transferring infection to another patient, or one of the healthcare workers. Two million healthcare workers are infected by needlestick injuries every year.”

The microneedle sampling technique is a development of earlier and ongoing experiments using similar patches to deliver drugs and vaccines painlessly – the sensation when they are pressed onto the skin is a bit like the roughness of Velcro, Dr Donnelly reports.

The microneedles are made of polymer gel – similar to the material used in superabsorbent nappies. For their original, injecting function, they are pre-loaded with vaccine or drug compounds that will be released into the skin on contact with the interstitial fluid.

But the flow can go both ways. So that for the sampling variants, the backing material can be made chemically attractive to target compounds, encouraging them to diffuse into the gel with interstitial fluid drawn out of the skin and locking them in place for later analysis. Real-time monitoring could be a realistic option in the future and might involve combining the microneedle technology with simple laser-based detection (“SERS”) of drug compounds inside the gel. The group already has proof-of-concept for this idea and are now looking to extend the range of drug concentrations that can be detected in this manner. Electrochemical detection is another attractive possibility that might allow patients to use the technology in their own homes. If connected wirelessly to their healthcare provider, they could then have their medicines or doses changed based on the microneedle readings, both enhancing patient care and saving NHS resources.

Children’s charity Action Medical Research, through a generous donation from The Henry Smith Charity, is now funding Dr Donnelly to develop the minimally-invasive microneedle sampling technology for monitoring therapeutic drug levels in babies.

“Premature babies have very limited blood volumes and are prone to bruising and scarring when blood samples are taken,” Dr Caroline Johnston, Research Evaluation Manager at Action Medical Research for children explains. “There is a real need for a safe, reliable and painless way to monitor these babies’ drug levels, and these microneedles are so far proving to have all the right characteristics.”

The group is currently in discussions with a major medical manufacturer with a view to producing prototype commercial devices, the first stage ahead of full clinical trials.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Ferring Bets on Bacteriophages to Treat Inflammatory Bowel Disease
Ferring Pharmaceuticals have annoucned that it will collaborate with Intralytix in the latest phase of its early stage development programme for a bacteriophage-based therapy for inflammatory bowel disease (IBD).
A Novel Drug to FIght Malaria
An international team of scientists has announced that a new compound to fight malaria is ready for human trials.
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
New Cell Structure Finding Might Lead to Novel Cancer Therapies
University of Warwick scientists in the U.K. say they have discovered a cell structure which could help researchers understand why some cancers develop.
Cancer Discovery Links Experimental Vaccine and Biological Treatment
A new study at the University of Wisconsin-Madison has linked two seemingly unrelated cancer treatments that are both now being tested in clinical trials.
Study Reveals New Method to Develop More Efficient Drugs
A new study suggests a new approach to develop highly-potent drugs which could overcome current shortcomings of low drug efficacy and multi-drug resistance in the treatment of cancer as well as viral and bacterial infections.
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!