Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Testosterone-Regulated Genes May Affect Vaccine-Induced Immunity

Published: Tuesday, December 24, 2013
Last Updated: Tuesday, December 24, 2013
Bookmark and Share
NIH-funded study helps explain differences in male and female responses to vaccines.

A new study has identified a link between certain genes affected by testosterone and antibody responses to an influenza vaccine. The findings, published in Proceedings of the National Academy of Sciences, suggest that testosterone levels may partially explain why men often have weaker responses to vaccines than women. The study, led by researchers at Stanford University, was supported in part by the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health.

Previous research has shown that men typically experience more severe viral and other microbial infections than women, who tend to mount stronger immune responses to infections and vaccinations. In the new study, researchers analyzed the antibody responses of 53 women and 34 men of various ages to the 2008-2009 seasonal influenza vaccine. Compared to the men, the women produced antibodies that in laboratory tests could more effectively neutralize the influenza virus.

To explain this difference, the scientists searched for patterns in gene expression, or the degree to which specific genes are turned on or off. They found that men with weak vaccine responses tended to have high expression levels of a certain cluster of genes involved in the metabolism of lipids (fats). Previous studies have suggested that testosterone may regulate the expression of many of these genes. The researchers found that men with high levels of testosterone and elevated expression of the gene cluster had weaker antibody responses to the vaccine than women and men with low testosterone. These results suggest that testosterone may suppress immune responses to vaccines by altering expression patterns of specific genes, but further research is needed to determine the mechanism.

The article, "A systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination," is published in the Proceedings of the National Academy of Sciences and can be accessed  below.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Promising Experimental Dengue Vaccine
A clinical trial in which volunteers were infected with dengue virus six months after receiving either an experimental dengue vaccine or a placebo injection yielded starkly contrasting results.
Thursday, March 17, 2016
Experimental Ebola Antibody Protects Monkeys
Antibody isolated from Ebola survivor can advance to clinical trials.
Friday, February 26, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
Scientific News
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
Paper Filter Can Remove Viruses from Water
A new paper filter can purify water from viruses, even the most difficult and contagious.
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Mimicking Evolution to Create Novel Proteins
A study by researchers in the Kuhlman lab offers a new route to design the 'cellular machines' needed to understand and battle diseases.
Antibody Therapy Opens Door to Potential New Treatment for HIV
Researchers at Rockefeller University show how a broadly neutralizing antibody could be used to help fight HIV.
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!