Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

MIT Chemists Devise Novel Way to Manufacture Peptide Drugs

Published: Wednesday, March 19, 2014
Last Updated: Wednesday, March 19, 2014
Bookmark and Share
New, fast synthetic method enables manufacture of peptides in hours, which could boost drug development.

Small protein fragments, also called peptides, are promising as drugs because they can be designed for very specific functions inside living cells. Insulin and the HIV drug Fuzeon are some of the earliest successful examples, and peptide drugs are expected to become a $25 billion market by 2018.

However, a major bottleneck has prevented peptide drugs from reaching their full potential: Manufacturing the peptides takes several weeks, making it difficult to obtain large quantities, and to rapidly test their effectiveness. 

That bottleneck may soon disappear: A team of MIT chemists and chemical engineers has designed a way to manufacture peptides in mere hours. The new system, described in a recent issue of the journal ChemBioChem, could have a major impact on peptide drug development, says Bradley Pentelute, an assistant professor of chemistry and leader of the research team.

“Peptides are ubiquitous. They’re used in therapeutics, they’re found in hydrogels, and they’re used to control drug delivery. They’re also used as biological probes to image cancer and to study processes inside cells,” Pentelute says. “Because you can get these really fast now, you can start to do things you couldn’t do before.”

The lead author of the paper is Mark Simon, a graduate student in Pentelute’s lab. Other authors include Klavs Jensen, head of MIT’s Department of Chemical Engineering, and Andrea Adamo, a research associate in chemical engineering.

Accelerated manufacturing

Therapeutic peptides usually consist of a chain of 30 to 40 amino acids, the building blocks of proteins. Many universities, including MIT, have facilities to manufacture these peptides, but the process usually takes two to six weeks, using machines developed about 20 years ago.

These machines require about an hour to perform the chemical reactions needed to add one amino acid to a chain. To speed up the process, the MIT team adapted the synthesis reactions so they can be done in a continuous flow system. Using this approach, each amino acid addition takes only a few minutes, and an entire peptide can be assembled in little more than an hour. 

In future versions, “we think we’re going to be able to do each step in under 30 seconds,” says Pentelute, who is also an associate member of the Broad Institute. “What that means is you’re really going to be able to do anything you want in short periods of time.”

The new system has storage vessels for each of the 20 naturally occurring amino acids, connected to pumps that pull out the correct one. As the amino acids flow toward the chamber where the reaction takes place, they travel through a coil where they are preheated to 60 degrees Celsius, which helps speed up the synthesis reaction. 

This system produces peptides as pure as those produced with existing machines. “We’re on par with the world’s best state-of-the-art synthesis, but we can do it much faster now,” Pentelute says.

The system should make it easier to design and produce new peptides, says Philip Dawson, an associate professor of chemistry at the Scripps Research Institute who was not part of the research team. “What I like about it is the simplicity of the device and the thoughtfulness with which it was put together,” Dawson says. “I would look forward to trying it out in my lab.”

With this technology, scientists could design and rapidly test new peptides to treat cancer and other diseases, as well as more effective variants of existing peptides, such as insulin, Pentelute says. Another benefit of this high-speed approach is that any potential problems with a particular peptide synthesis can be detected much sooner, allowing the researchers to try to fix it right away.

Another area Pentelute plans to pursue is creating so-called “mirror-image” proteins. Nearly all proteins that exist in nature are made of L amino acids, whose structures have a right-handed orientation. Creating and studying peptides that are mirror images of these natural proteins could pave the way to developing such peptides as new drugs with completely different functions from the right-handed versions. 

Technology with an impact

In a separate paper published in the same issue of ChemBioChem, the researchers demonstrated that they could use this technology not only to synthesize peptides, but also combine these to form large synthetic proteins. To demonstrate the technology, they created an antibody mimic that has 130 amino acids, as well as a 113-amino-acid enzyme produced by bacteria. Chemistry graduate students Surin Mong and Alexander Vinogradov are lead authors of that paper, along with Simon.

The researchers have patented the technology, and MIT’s Deshpande Center for Technological Innovation has given them a grant to help commercialize it. Pentelute says he believes that about 10 machines using the new technology would be enough to meet current demand, which is about 100,000 to 500,000 custom peptides per year.

Pentelute envisions that the technology could have an impact on synthetic biology comparable to rapid synthesis of short strands of DNA and RNA. These strands, known as oligonucleotides, take only a day or two to prepare and can be used to create custom genes to give cells new functions. 

“That’s what our aim is — to have next-day or two-day delivery of these peptide units, to anyone in the world. That’s really the dream,” he says.

The research was funded by the MIT Reed Fund, the Deshpande Center, a Damon-Runyon-Rachleff Innovation Award, a Sontag Foundation Distinguished Scientist Award, a C.P. Chu and Y. Lai Fellowship, an AstraZeneca Distinguished Graduate Student Fellowship, the National Institute of General Medical Sciences, and the National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Recruiting The Entire Immune System To Attack Cancer
Stimulating both major branches of the immune system halts tumor growth more effectively.
Wednesday, April 15, 2015
Researchers Use Nanoparticles to Deliver Vaccines to Lungs
Particles that deliver vaccines directly to mucosal surfaces could defend against many infectious diseases.
Tuesday, October 01, 2013
MIT Team Receives $10.4 Million Biomanufacturing Grant from DARPA
With the grant, MIT’s Biomanufacturing Research Program aims to develop new technologies that can rapidly manufacture biologic drugs on the battlefield.
Thursday, September 19, 2013
Nanosensors Could Aid Drug Manufacturing
Chemical engineers find that arrays of carbon nanotubes can detect flaws in drugs and help improve production.
Friday, August 23, 2013
Bringing a New Perspective to Infectious Disease
Enlisted in the fight against HIV, MIT engineers and scientists contribute new technology, materials and computational studies.
Thursday, February 07, 2013
A Safer Way to Vaccinate
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.
Monday, January 28, 2013
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
DARPA and NIH to Fund ‘Human Body on a Chip’ Research
MIT-led team to receive up to $32 million to develop technology that could accelerate pace and efficiency of pharmaceutical testing.
Wednesday, July 25, 2012
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
Vaccine Against Common Cold Achievable
Researchers suggest that a vaccine against rhinoviruses is possible using variant virus vaccines.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Novavax RSV F Vaccine Fails Phase 3 Trial
Novavax announces topline RSV F Vaccine data from two clinical trials in older adults.
GSK’s Shingles Vaccine Candidate Shows High Efficacy
The vaccine candidate showed high efficacy against shingles and its complications in adults aged 70yrs+ in phase III study.
Eisai Establishes AiM Institute
The Andover innovative Medicines (AiM) Institute will develop innovative precision medicines for hard-to-treat conditions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!