Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neurotrope, Stanford Collaborate on Bryostatin Analogues

Published: Wednesday, May 21, 2014
Last Updated: Wednesday, May 21, 2014
Bookmark and Share
Company has signed an agreement with Stanford University to study and, along with Dr. Paul Wender, investigate analogs of bryostatin as potential clinical candidates for the treatment of various neurological disorders.

This collaboration is framed by a license agreement forged between Stanford University and Neurotrope, which provides the Company with exclusive rights to make, use or sell certain bryologs for commercial application in therapeutic applications for central nervous system disorders, lysosomal storage diseases, stroke, cardioprotection and traumatic brain injury. 

Bryostatin is Neurotrope’s Phase 2 clinical candidate being investigated currently for the treatment of Alzheimer’s Disease. Bryostatin potently activates the enzyme PKCepsilon, and in preclinical in vivo models this effect has been shown to play a role in slowing or reversing several neurodegenerative disease processes. 

Bryostatin is a natural product produced by a marine microorganism called Bugula neritina and is isolated from biomass harvested from the ocean. Several total syntheses of this complex product have been achieved in recent years in various academic chemistry laboratories, and these approaches represent an alternative source of this drug. 

Dr. Wender’s laboratory has synthesized a large family of bryologs over a number of years as part of a research program to define the essential pharmacophore (molecular features) critical to bryostatin’s potent biological activity. The bryologs are easier to produce than bryostatin due to their less complex chemical structures. They represent a rich collection of potential drug candidates, some of which are expected to be advanced to clinical trials by Neurotrope for the treatment of several neurodegenerative diseases such as ischemic stroke, Fragile X Syndrome, traumatic brain injury and Alzheimer’s Disease. 

Dr. James New, the Company’s President and Chief Executive Officer, stated “I’ve admired Dr. Wender’s work for many years and am truly excited to have established this collaboration with his laboratory. His wealth of knowledge and experience will provide significant value to our product development team which expects to advance a bryolog drug candidate into clinical development in the 2015 timeframe.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
New Model to Enhance Zika Virus Research
The model will allow researchers to better understand how the virus causes disease and aid in the development of antiviral compounds and vaccines.
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
BMS’s Opdivo Clinical Trial Shows Promise
Safety profile of the combination regimen from CheckMate -069 was consistent with previously reported studies and adverse events were managed using established safety algorithms.
CNS Inflammation: A Pathway and Possible Drug Target
Scientists have long known that the central nervous system (CNS) has a remarkable ability to limit excessive inflammation in the presence of antigens or injury, but how it works has been unclear.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!