Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neurotrope, Stanford Collaborate on Bryostatin Analogues

Published: Wednesday, May 21, 2014
Last Updated: Wednesday, May 21, 2014
Bookmark and Share
Company has signed an agreement with Stanford University to study and, along with Dr. Paul Wender, investigate analogs of bryostatin as potential clinical candidates for the treatment of various neurological disorders.

This collaboration is framed by a license agreement forged between Stanford University and Neurotrope, which provides the Company with exclusive rights to make, use or sell certain bryologs for commercial application in therapeutic applications for central nervous system disorders, lysosomal storage diseases, stroke, cardioprotection and traumatic brain injury. 

Bryostatin is Neurotrope’s Phase 2 clinical candidate being investigated currently for the treatment of Alzheimer’s Disease. Bryostatin potently activates the enzyme PKCepsilon, and in preclinical in vivo models this effect has been shown to play a role in slowing or reversing several neurodegenerative disease processes. 

Bryostatin is a natural product produced by a marine microorganism called Bugula neritina and is isolated from biomass harvested from the ocean. Several total syntheses of this complex product have been achieved in recent years in various academic chemistry laboratories, and these approaches represent an alternative source of this drug. 

Dr. Wender’s laboratory has synthesized a large family of bryologs over a number of years as part of a research program to define the essential pharmacophore (molecular features) critical to bryostatin’s potent biological activity. The bryologs are easier to produce than bryostatin due to their less complex chemical structures. They represent a rich collection of potential drug candidates, some of which are expected to be advanced to clinical trials by Neurotrope for the treatment of several neurodegenerative diseases such as ischemic stroke, Fragile X Syndrome, traumatic brain injury and Alzheimer’s Disease. 

Dr. James New, the Company’s President and Chief Executive Officer, stated “I’ve admired Dr. Wender’s work for many years and am truly excited to have established this collaboration with his laboratory. His wealth of knowledge and experience will provide significant value to our product development team which expects to advance a bryolog drug candidate into clinical development in the 2015 timeframe.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Therapy Halts Progression of Lou Gehrig’s Disease
Researchers at Oregon State University announced today that they have essentially stopped the progression of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, for nearly two years in one type of mouse model used to study the disease – allowing the mice to approach their normal lifespan.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!