Corporate Banner
Satellite Banner
Biologics & Bioprocessing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

High Capacity Antibody Purification

Published: Sunday, August 17, 2014
Last Updated: Friday, August 29, 2014
Bookmark and Share
Researchers from the A*Star Bioprocessing Technology Institute have used magnetic nanoparticles to break the capacity barrier for antibody purification.

Monoclonal antibodies represent the largest and fastest-growing segment of international biopharma. While these therapeutic agents are a boon for global healthcare, productivity constraints pose a serious challenge for manufacturers seeking to make sufficient amounts for therapeutic applications. Now, A*STAR researchers have developed a high-capacity method to purify monoclonal antibodies that uses magnetic nanoparticles and also introduces new operating conditions.1

At present, therapeutic antibodies are generally purified by a technique known as protein A affinity chromatography. The process yields a high purification factor — typically 99 per cent — but it is slow, thereby creating a severe productivity bottleneck. The process is largely hindered by the low capacity of protein A, which binds monoclonal antibodies at an average rate of 50 grams per liter of protein A chromatography media. The overall purification process requires unpurified antibodies to pass through columns packed with the media in multiple cycles that can take up to a week.

A research team led by Pete Gagnon and co-workers from the A*STAR Bioprocessing Technology Institute in Singapore have developed an alternative method with 1,000 times the capacity of protein A. The technique involves the use of polyethylene glycol, which causes the antibodies to be deposited on the surface of starch-coated magnetic nanoparticles (see image). The particles are collected in a magnetic field, undeposited contaminants are washed away and the purified antibodies recovered by removing the polyethylene glycol.

“The high capacity of our nanoparticle method makes it much faster than column chromatography,” explains Gagnon. “Instead of the pharmaceutical industry norm of five to eight cycles, the new process requires only one cycle, which takes just a few hours.” This reduction dramatically increases the productivity of the new approach over traditional methods.

The new method also required the research team to develop new operating conditions. Polyethylene glycol has been used for decades to process antibodies, but it has never achieved the level of purity needed for clinical therapeutics. The team discovered that by elevating the salt concentration, they could reduce contaminant levels from about 250,000 parts per million to 500: the same level achieved by protein A. A single follow-on polishing step using a multimodal chromatography column further purified the antibodies to clinical quality standards.

Gagnon notes the high potential for adoption of the new technology by industry. In addition to solving the long-standing problem of productivity for monoclonal antibodies, the nanoparticle approach can be applied to many other therapeutic proteins and also to viral vaccines.

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute.

Reference
1. Gagnon, P., Toh, P. & Lee, J. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol. Journal of Chromatography A 1324, 171–180 (2013). | 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
Unique Anti-reflective and Self-cleaning Plastic Films to be Ramped Up for Industry Use
Scientists from A*STAR's IMRE will partner companies to develop, prototype and conduct pilot large scale manufacturing of nanoimprinted materials with better performance and at potentially lower cost than current production methods.
Monday, August 06, 2012
Scientific News
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Designing Better Drugs
A rational drug engineering approach could breathe new life into drug development.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
New Model to Enhance Zika Virus Research
The model will allow researchers to better understand how the virus causes disease and aid in the development of antiviral compounds and vaccines.
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!