Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NanoInk Announces Launch of Contract Services Program for Live Single Cell Assay Work

Published: Wednesday, February 08, 2012
Last Updated: Wednesday, February 08, 2012
Bookmark and Share
Service offering expected to advance research programs involved with toxicity assessment, high content screening, and cell-cell communication.

NanoInk's(R) NanoFabrication Systems Division announced today that it introduced a new contract services program dedicated to the development of live single cell array assays. This offering supplements NanoInk's portfolio of Dip Pen Nanolithography(R) (DPN(R))-based systems and tools used for micro and nanopatterning applications to include a service component. Life scientists now have even more ways to access the advantages of DPN for their research.

At the heart of the NanoFabrication Systems' contract services program is its DPN nanofabrication instruments capable of constructing complex multiplexed patterns of biocompatible materials at sub-cellular scales. This capability can be utilized to construct defined microenvironments for attaching live single cells and subsequently investigating cellular responses. Single cells (up to 5,000 individual cells on a single NanoInk chip) can be exposed to different external stimuli (including biological, chemical and topographical stimuli) and the downstream effects of these stimuli can be monitored at the cellular, proteomic or genomic levels. Additionally, studies on limited or rare cells harvested from a patient can potentially be exposed to many conditions, making theranostic applications possible. This new contract services program will enable researchers to engage NanoInk to design, develop and construct custom single cell assays.

"We believe that NanoInk's single cell assay technology has the potential to revolutionize in vitro cell biology research, including applications in drug toxicity testing and drug screening. Micropatterned single cells can also be harnessed to probe underlying mechanisms of cell behavior like cell-cell interactions, cell-surface interactions, cell migration, and cell invasion," explained Tom Warwick, general manager of the NanoFabrication Systems Division.

NanoInk has already demonstrated the ability of its nanofabrication platform to place single cells at defined locations on a substrate and to then expose individual cells to small molecules and nanoparticles.

Saju Nettikadan, Ph.D., director of applications development at NanoInk, said, "NanoInk findings also show that two different cell types can be placed at defined locations on a single chip to form single cell co-cultures. We have demonstrated the single cell co-culture proof-of-concept using 3T3 fibroblasts and C2C12 myoblasts. As part of our live single cell assay contract research program, we welcome requests to design and develop custom assays."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
3D Models May Yield Ovarian Cancer Insights
Researchers are developing new tools to decipher ovarian cancer developments through a 3D printing technology.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Mapping Zika’s Routes to Developing Fetus
UC researchers show how Zika virus travels from a pregnant woman to her fetus, and also identified a drug that could stop it.
3D Printing Cartilage
3D bioprinting has successfully manufactured cartilage using bioink sourced from cow cartilage strands.
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Scientists Culture Elusive Yellowstone Microbe
ORNL scientists have successfully isolated and cultured a Yellowstone sourced acidic hot-spring based microbe.
A 3D Paper-Based Microbial Fuel Cell
Researchers have developed a proof-of-concept 3D paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.
Just Gellin’: How To Grow Strong Muscles-On-A-Chip
USC researchers hope to usher in new treatments for patients with muscular dystrophy.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!