Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Develop a New Cell and Animal Model of Inflammatory Breast Cancer

Published: Tuesday, April 10, 2012
Last Updated: Tuesday, April 10, 2012
Bookmark and Share
The new model, developed by researchers at the Fox Chase Cancer Center, may provide scientists with a better understanding of the disease and help with developing effective intervention.

Inflammatory breast cancer (IBC) is a very aggressive, often misunderstood type of cancer that is diagnosed more frequently in younger women compared with other types of breast cancer. The five-year survival rate is between 25 and 50 percent—significantly lower than the survival rate for other types of breast cancer. The reason for the poor prognosis is that IBC usually grows rapidly and often spreads quickly to other parts of the body, including the brain, bone and lymph nodes. In an effort to better understand the biology of IBC, researchers at Fox Chase Cancer Center have developed a new cell and animal model that holds promise for providing a detailed understanding of the molecular mechanisms underlying the disease and for developing effective interventions.

“In order for us to improve the treatment of these patients, we need to understand the biology of the disease—why these cells are so aggressive, invade very early on, and are resistant to standard treatments—and this starts with having good laboratory and preclinical models,” says Massimo Cristofanilli, MD, FACP, chairman of Fox Chase’s department of medical oncology and senior investigator for the research, which will be presented at the AACR Annual Meeting 2012 on Wednesday, April 4.

The researchers developed a unique model that recapitulates the aggressive metastasis and cancer stem cell activity associated with poor outcomes in patients with IBC. Understanding of the molecular basis of IBC may help increase the research community’s knowledge of the metastatic process of other types of breast cancers.

“Because there are only a few models of inflammatory breast cancer, it’s important to develop more models of this disease, and ours represents an ideal model to evaluate stem cell-targeting therapies,” says Sandra Fernandez, PhD, assistant research professor at Fox Chase and lead author on the study.

To develop the new disease model, Fernandez, Cristofanilli and their colleagues developed an IRB-approved prospective protocol allowing for the collection of tissue and pleural fluid from patients with advanced IBC. The new cell line, known as FC-IBC02, was established from the pleural fluid collected from a 49-year-old patient whose cells lacked the protein HER2/neu, as well as receptors for the female hormones estrogen and progesterone. About 15 percent of breast cancer patients share these features and, as a result, they do not respond to hormonal therapies and certain medications that target these proteins.

“Currently, the only option to treat these patients is chemotherapy,” Fernandez says. “So it’s important to have a specific model that we can use to test different drugs and see which ones work for this kind of disease.”

Moreover, the researchers grew culture tumor cells derived from the patient’s fluid and found that they contained a large amount of the protein tetraspanin CD151, which controls tumor cell migration and invasion. In addition, these cells formed multicellular spheroids that displayed markers of cancer stem cells, including the marker CD44. When injected into the mammary fat pad of mice, the tumor spheroids rapidly developed into tumors and spread to the lungs.

Furthermore, using the latest CytoScan HD arrays, the FCCC researchers found that these cells have multiple losses and gains across almost the whole genome, a phenomenon known as chromothripsis. In particular, FC-IBC02 cells have an amplification on chromosome 8q where the oncogene MYC is located and a deletion on chromosome 7p where tumor suppressor gene p53 is embedded.  These analysis will identify novel molecular targets to fight the disease. By culturing cells from a large pool of patients, they will look for promising targets that are commonly associated with IBC as well as test new stem cell-targeting drugs that could reduce metastasis.

“I think it’s a major step forward for us as clinicians and scientists to develop better therapies and new diagnostic tools for patients with inflammatory breast cancer,” Cristofanilli says. “We would like to translate our discoveries from bench to bedside very quickly, as these patients really need new treatments.”

Co-investigators on this study include Zhaomei Mu, Lucy Aburto, and Xiaoshen Dong from Fox Chase; Khoi Chu, Kimberly Boley, and Fredika Robertson of the Anderson Cancer Center in Houston, Texas; and Fedor Berditchevski of the University of Birmingham, School of Cancer, Edgbaston, Birmingham, UK.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Characterizing the Mouse Gut Microbiome
Study establishes the first public collection of bacteria from the intestine of mice.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
'Fixing' Blood Vessel Cells To Diagnose Blood Clotting Disorders
A novel microfluidic device detects how endothelial cells that line vessels contribute to hemostasis.
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Engineering Cells to Speed Tissue Repair
Kelly Schultz studies how cells remodel their microenvironment - a crucial step toward engineering cells to move through synthetic material for faster tissue regeneration.
Cancer Cells Migrate Towards Oxygen
Bioengineers report results showing sarcoma cells in mice finding pathways toward higher concentrations of oxygen
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Singapore Scientists Grow Mini Human Brains
Mini midbrains provide next generation platforms to investigate human brain biology, diseases and therapeutics
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!