Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

Stem Cells Develop Best in 3D

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen are contributing important knowledge about how stem cells develop best into insulin-producing cells.

In the long term this new knowledge can improve diabetes treatment with cell therapy. The results have just been published in the scientific journal Cell Reports.

Stem cells are responsible for tissue growth and tissue repair after injury. Therefore, the discovery that these vital cells grow better in a three-dimensional environment is important for the future treatment of disease with stem cell therapy.

"We can see that the quality of the cells produced two-dimensionally is not good enough. By putting the cells in a three-dimensional environment and giving them the proper growth conditions, we get much better results. Therefore we are developing a three-dimensional culture medium in gelatine in the laboratory to mimic the one inside an embryo," says Professor Anne Grapin-Botton from DanStem at the University of Copenhagen, who produced the results together with colleagues from Switzerland and Belgium.

The international research team hopes that the new knowledge about three-dimensional cell growth environments can make a significant contribution to the development of cell therapies for treating diabetes. In the long term this knowledge can also be used to develop stem cell treatments for chronic diseases in internal organs such as the liver or lungs. Like the pancreas, these organs are developed from stem cells in 3D.

From stem cells to specialised cells

The research team has investigated how the three-dimensional organisation of tissue in the early embryonic stage influences development from stem cells to more specialised cells.

"We can see that the pancreas looks like a beautiful little tree with branches. Stem cells along the branches need this structure to be able to create insulin-producing cells in the embryo. Our research suggests that in the laboratory beta cells can develop better from stem cells in 3D than if we try to get them to develop flat in a Petri dish," explains Professor Grapin-Botton.

"Attempts to develop functional beta cells in 2D have unfortunately most often resulted in poorly functioning cells. Our results from developing cells in 3D have yielded promising results and are therefore an important step on the way to developing cell therapies for treating diabetes."

The research is supported by the Novo Nordisk Foundation, Swiss National Research Foundation, and the National Institute of Health (NIH), USA.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Stiffening a Blow to Cancer Cells
Researchers develop a way to predict how a tumor tissue's physical properties affect its response to chemotherapy drugs.
Curcumin Shows Promise as Cancer Treatment
When delivered at the correct circadian phase, curcumin demonstrates sustained toxicity in cancer cells and should be considered for use in patient care.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
Using Stem Cells to Grow a 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Puttng Cells Through Their Paces
An obstacle course for human lung cells could be the answer for better testing the effectiveness of potential new drugs.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos