Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CYTOO's Motility Plates to Study Cell Migration to be Launched at American Society for Cell Biology (ASCB)

Published: Monday, December 03, 2012
Last Updated: Monday, December 03, 2012
Bookmark and Share
CYTOO S.A. will launch the CYTOOplates Motility, based on CYTOO’s 2D+ Cell Culture Platform with its adhesive micropatterns, at the ASCB 2012 Annual meeting on December 15-19, 2012 in San Francisco, USA.

After sponsoring last year’s “World Cell Race”, showcased at ASCB 2011 with huge success, CYTOO returns to ASCB 2012 to launch a new product to study cell migration for screening applications in both oncology and drug discovery.

“The objective of the first World Cell Race was to perform a large-scale comparison of cell motility across many different adherent cell types under standardized conditions. Many contestants and laboratories over the world proposed their cells as competitors, and this collaborative competition1 demonstrated how fun and serious science can be mixed”, commented Alexandra Fuchs, COO of CYTOO.

“We were delighted to participate and design a product to make this race a success. After the World Cell Race, the success of our CYTOOchips Motility was undeniable, as they provide a perfect tool for studying cell migration, showing characteristics closer to those found in vivo². We will celebrate the first anniversary of the WCR with the launch of our CYTOOplates Motility in a standard microplate format.”

CYTOOplates Motility feature adhesive tracks of 4 different widths from 2.5 to 20 μm allowing a wide range of applications including single vs collective cell migration, and cell pairing ”, explained Constantin Nelep, Sr. Product Manager of CYTOO. “We have also seen our Motility products used in other application areas, such as directional neurite outgrowth assays.”

During ASCB 2012 meeting, CYTOO will also present the company’s 2D+ Cell Culture Platform, that was launched in July. Based on the use of adhesive micropatterns to guide cell architecture and behavior in culture, this technology contrasts with traditional 2D culture where cells spread and move in an uncontrolled manner, introducing a considerable but unnoticed variability in cell function. By defining the 2D topology of cell adhesion, 2D+ Technology enables the fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations, resulting in control of cell contractility, cell polarity, organelle positioning, or cell division axis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Olivier Pasquier Joins CYTOO as Chief Commercial Officer
Olivier Pasquier first graduated from the French University Nice-Sophia Antipolis in molecular biology. He then completed his background with a marketing MBA from ESCP Europe.
Monday, March 18, 2013
Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
New Measurements Reveal Differences Between Stem Cells for Treating Retinal Degeneration
By growing two types of stem cells in a “3-D culture” and measuring their ability to produce retinal cells, a team lead by St. Jude Children’s Research Hospital researchers has found one cell type to be better at producing retinal cells.
Researchers Identify Critical Genes Responsible for Brain Tumor Growth
After generating new brain tumor models scientists have identified the role of a family of genes underlying tumor growth in a wide spectrum of high grade brain tumors.
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
A New Path Towards a Universal Flu Vaccine
New research suggests it may be possible to harness a previously unknown mechanism within the immune system to create more effective and efficient vaccines against this ever-mutating virus.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!