Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

CYTOO’s 2D+ Technology and Institut Curie’s Organelle Map in the limelight at SLAS 2013

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
CYTOO will attend the Society for Laboratory Automation and Screening (SLAS) 2013 conference on 12-16 Jan, in Orlando, Florida, USA.

The company will present their 2D+ Solutions, opening fresh perspectives for cell based assay development in drug discovery.

2D+ Solutions are based on CYTOO’s standard and custom adhesive micropatterns in 96-well plates which guide cell architecture and behavior. By defining the 2D topology of cell adhesion, the 2D+ Cell Culture Platform enables fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations. This approach results in control of cell contractility, cell polarity, organelle positioning, and cell division axis.

2D+ Custom Solutions are specifically designed to bring expertise, resources and technology to address current bottlenecks in cell based assay development and screening in drug discovery.

2D+ Custom Solutions include: Exploratory solutions to guide customers through the initial exploration of the 2D+ technology with experienced PhD-level expert support; Assay development to select the best ecosystem for the requested cells; Screening to run pilot or full sized screens. All Solutions are tailored to the customer’s needs and can be carried out in the customer’s facilities or outsourced to CYTOO, on our fully equipped HCS screening platform.

The 2D+ technology addresses a major concern with traditional 2D culture, in which cells spread and move in an uncontrolled manner, introducing a considerable but unnoticed variability in cell function. Kristine Schauer, from the Institut Curie in Paris, France, used the crossbow adhesive micropatterns to get reproducible shape and distribution of intracellular compartments and developed a mathematical algorithm to generate and compare probabilistic density maps of the different endosome compartments.

This innovative approach is a powerful universal method to identify statistically relevant hits and drug effects in complex cell based assays, and according to Michel Bornens, COO at CYTOO “the method has now the potential to become a gold-standard in the quantitative analysis of cell-based high-throughput data”. Kristine Schauer’s Organelle Map figures among the nine 2013 SLAS Innovation Award finalists. A $10,000 cash prize will be attributed during SLAS 2013, and recognizes extraordinary achievement in innovative laboratory science and technology.

Attendees are invited to visit booth #310 to discuss their application with François Chatelain, President and CEO, and Lisa Minor, Application Development Leader.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
The Black Box at the Beginning of Life
Kyoto University sheds light on the earliest stages of human germ cell development.
Flu Study, on Hold, Yields New Vaccine Technology
Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison.
3D Spheroid Culture Trends
Three dimensional (3D) cell culture has been an area of increasing interest and relevance across a wide breadth of fields for some time.
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos