Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Silk and Cellulose Biologically Effective for Use in Stem Cell Cartilage Repair

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Over 20 million people in Europe suffer from osteoarthritis which can lead to extensive damage to the knee and hip cartilage.

Stem cells offer a promising way forward but a key challenge has been to design a ‘smart material’ that is biologically effective for cartilage tissue regeneration. Now researchers have identified a blend of naturally occurring fibres such as cellulose and silk that makes progress towards affordable and effective cell-based therapy for cartilage repair a step closer.

The EPSRC-funded study, published in Biomacromolecules and undertaken by University of Bristol researchers, explored the feasibility of using natural fibres such as silk and cellulose as stem cell scaffolds – the matrix to which stem cells can cling to as they grow.

Both cellulose and silk are commonly used in textiles but the researchers demonstrated an unexpected use for the two natural polymers when mixed with stem cells.  The team treated blends of silk and cellulose for use as a tiny scaffold that allows adult connective tissue stem cells to form into preliminary form of chondrocytes — the cells that make healthy tissue cartilage — and secrete extracellular matrix similar to natural cartilage.

Dr Wael Kafienah, lead author from the University’s School of Cellular and Molecular Medicine, said: “We were surprised with this finding, the blend seems to provide complex chemical and mechanical cues that induce stem cell differentiation into preliminary form of chondrocytes without need for biochemical induction using expensive soluble differentiation factors. This new blend can cut the cost for health providers and makes progress towards effective cell-based therapy for cartilage repair a step closer.”

Dr Sameer Rahatekar, lead author from the University’s Advanced Composite Centre for Innovation and Science (ACCIS), added: “We used ionic liquids for the first time to produce cellulose and silk scaffolds for stem cells differentiation.  These liquids are effective in dissolving biopolymers and are environmentally benign compared to traditional solvents used for processing of cellulose and silk.”

The teams are currently working on the fabrication of 3D structures from the blend suitable for implantation in patient joints with future studies focusing on understanding the peculiar interactions between the blend and stem cells towards refining the quality of regenerated cartilage.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Yeast Cells Use Signaling Pathway to Modify Their Genomes
Researchers at the Babraham Institute and Cambridge Systems Biology Centre, University of Cambridge have shown that yeast can modify their genomes to take advantage of an excess of calories in the environment and attain optimal growth.
New Material Forges the Way for 'Stem Cell Factories'
Researchers have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The researchcould forge the way for the creation of 'stem cell factories' - the mass production of human embryonic (pluripotent) stem cells.
New Measurements Reveal Differences Between Stem Cells for Treating Retinal Degeneration
By growing two types of stem cells in a “3-D culture” and measuring their ability to produce retinal cells, a team lead by St. Jude Children’s Research Hospital researchers has found one cell type to be better at producing retinal cells.
Researchers Identify Critical Genes Responsible for Brain Tumor Growth
After generating new brain tumor models scientists have identified the role of a family of genes underlying tumor growth in a wide spectrum of high grade brain tumors.
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
A New Path Towards a Universal Flu Vaccine
New research suggests it may be possible to harness a previously unknown mechanism within the immune system to create more effective and efficient vaccines against this ever-mutating virus.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!