Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Silk and Cellulose Biologically Effective for Use in Stem Cell Cartilage Repair

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Over 20 million people in Europe suffer from osteoarthritis which can lead to extensive damage to the knee and hip cartilage.

Stem cells offer a promising way forward but a key challenge has been to design a ‘smart material’ that is biologically effective for cartilage tissue regeneration. Now researchers have identified a blend of naturally occurring fibres such as cellulose and silk that makes progress towards affordable and effective cell-based therapy for cartilage repair a step closer.

The EPSRC-funded study, published in Biomacromolecules and undertaken by University of Bristol researchers, explored the feasibility of using natural fibres such as silk and cellulose as stem cell scaffolds – the matrix to which stem cells can cling to as they grow.

Both cellulose and silk are commonly used in textiles but the researchers demonstrated an unexpected use for the two natural polymers when mixed with stem cells.  The team treated blends of silk and cellulose for use as a tiny scaffold that allows adult connective tissue stem cells to form into preliminary form of chondrocytes — the cells that make healthy tissue cartilage — and secrete extracellular matrix similar to natural cartilage.

Dr Wael Kafienah, lead author from the University’s School of Cellular and Molecular Medicine, said: “We were surprised with this finding, the blend seems to provide complex chemical and mechanical cues that induce stem cell differentiation into preliminary form of chondrocytes without need for biochemical induction using expensive soluble differentiation factors. This new blend can cut the cost for health providers and makes progress towards effective cell-based therapy for cartilage repair a step closer.”

Dr Sameer Rahatekar, lead author from the University’s Advanced Composite Centre for Innovation and Science (ACCIS), added: “We used ionic liquids for the first time to produce cellulose and silk scaffolds for stem cells differentiation.  These liquids are effective in dissolving biopolymers and are environmentally benign compared to traditional solvents used for processing of cellulose and silk.”

The teams are currently working on the fabrication of 3D structures from the blend suitable for implantation in patient joints with future studies focusing on understanding the peculiar interactions between the blend and stem cells towards refining the quality of regenerated cartilage.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Puttng Cells Through Their Paces
An obstacle course for human lung cells could be the answer for better testing the effectiveness of potential new drugs.
Inherited Heart Condition Breakthrough
Using stem cells, scientists have created a specific heart condition model, yeilding insights into unexpected disease mechanisms.
Genetic Tug of War Before Cells Decide Fate
Researchers report that as developing blood cells are triggered by genetic signals firing on and off, a 'tug of war' occurs.
Origin of Cultured Cells: Not Where You Think
Study shows cultured cells from decades-old cell line does not originate from the patient it was claimed to derive from.
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Hope for Zika Treatment Found in Drug Screening
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection.
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Growing Noroviruses in the Lab
Human noroviruses – the leading viral cause of acute diarrhea around the world – have been difficult to study because scientists had not found a way to grow them in the lab.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!