Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Silk and Cellulose Biologically Effective for Use in Stem Cell Cartilage Repair

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Over 20 million people in Europe suffer from osteoarthritis which can lead to extensive damage to the knee and hip cartilage.

Stem cells offer a promising way forward but a key challenge has been to design a ‘smart material’ that is biologically effective for cartilage tissue regeneration. Now researchers have identified a blend of naturally occurring fibres such as cellulose and silk that makes progress towards affordable and effective cell-based therapy for cartilage repair a step closer.

The EPSRC-funded study, published in Biomacromolecules and undertaken by University of Bristol researchers, explored the feasibility of using natural fibres such as silk and cellulose as stem cell scaffolds – the matrix to which stem cells can cling to as they grow.

Both cellulose and silk are commonly used in textiles but the researchers demonstrated an unexpected use for the two natural polymers when mixed with stem cells.  The team treated blends of silk and cellulose for use as a tiny scaffold that allows adult connective tissue stem cells to form into preliminary form of chondrocytes — the cells that make healthy tissue cartilage — and secrete extracellular matrix similar to natural cartilage.

Dr Wael Kafienah, lead author from the University’s School of Cellular and Molecular Medicine, said: “We were surprised with this finding, the blend seems to provide complex chemical and mechanical cues that induce stem cell differentiation into preliminary form of chondrocytes without need for biochemical induction using expensive soluble differentiation factors. This new blend can cut the cost for health providers and makes progress towards effective cell-based therapy for cartilage repair a step closer.”

Dr Sameer Rahatekar, lead author from the University’s Advanced Composite Centre for Innovation and Science (ACCIS), added: “We used ionic liquids for the first time to produce cellulose and silk scaffolds for stem cells differentiation.  These liquids are effective in dissolving biopolymers and are environmentally benign compared to traditional solvents used for processing of cellulose and silk.”

The teams are currently working on the fabrication of 3D structures from the blend suitable for implantation in patient joints with future studies focusing on understanding the peculiar interactions between the blend and stem cells towards refining the quality of regenerated cartilage.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Editing of Embryos Approved in the UK
The Human Fertilisation and Embryology Authority (HFEA) has approved a research application from the Francis Crick Institute to use new "gene editing" techniques on human embryos.
Microbes Take Their Vitamins
Scientists exploit organisms' needs in order to track 'vitamin mimics' in bacteria.
Machine Learning Uncovers Unknown Bacterial Features
Technique robustly identified characteristic gene expression patterns in response to antibiotics, low oxygen conditions.
CRISPR-Cas9 Gene Editing Advances Again
UC Berkeley researchers have made a major improvement in CRISPR-Cas9 technology that achieves an unprecedented success rate of 60 percent when replacing a short stretch of DNA with another.
Disrupting Cell’s Supply Chain Freezes Cancer Virus
When the cancer-causing Epstein-Barr virus moves into a B-cell of the human immune system, it tricks the cell into rapidly making more copies of itself, each of which will carry the virus.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
ASCB: A CELLebration of Cell Biology
The last major congress of the year, ASCB is less a platform for launching new products, but one for confirming and consolidating the trends that have emerged over the past 12 months.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!