Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BioCision Announces Two New U.S. Patents for Thermo-Conductive Products

Published: Thursday, June 20, 2013
Last Updated: Thursday, June 20, 2013
Bookmark and Share
New patents awarded for CoolSink® Plate Modules and ThermalTray™ Platforms.

BioCision has announced the issuance of new patents by the U.S. Patent Office that apply to two of the company’s thermo-conductive products developed to standardize sample handling to ensure the consistency of test conditions and accuracy of results in common laboratory procedures.

Patent number 8,388,912 covers CoolSink® Plate Modules, which provide a solid, sturdy interface between laboratory sample plates and a heat sink, such as ice, or a heat source.

The modules are made of a thermo-conductive alloy that maintains an even temperature across all wells in the plate, eliminating any “edge effect” where content from the wells close to the perimeter of the plate change temperature more rapidly than those in the center of the plate.

This helps maintain samples at a desired temperature while keeping them dry and sterile, which are optimal conditions for ELISA, multiplex immunoassays, enzyme assays, and cell washing steps.

In addition, BioCision’s ThermalTray™ Platforms were awarded patent number 8,460,621. The platforms support sample racks or plates in liquid and semi-solid heat sinks and sources such as melting ice, water baths, and liquid nitrogen.

Eliminating direct contact between a sample tube or plate and melting ice or bath water protects against potential water-borne contaminants.

The platforms are made of a thermo-conductive alloy, assisting in the transfer of heat between samples and a temperature source.

“These new patents reflect the innovation and new opportunities to improve sample standardization that our products represent,” said Rolf Ehrhardt, MD, PhD, BioCision CEO.

Ehrhardt continued, “This patent protection provides significant support for our continuing efforts to help research institutions in the biotechnology, pharmaceutical, clinical, diagnostic, academic, and government scientific communities to set entirely new standards for performance in sample handling.”

Ensuring reproducible temperature profiles and standardizing temperature-sensitive lab procedures are essential goals in a wide array of scientific disciplines, including cell and tissue culture, cryopreservation, histology, immunohistochemistry, virus and bacterial research, molecular biology, cell therapy, pharmaceutical manufacturing, biofuels research and many others.

Advances in technology to control temperature in sample handling can improve accuracy of test results, which can have a direct impact on diagnosis and patient outcomes.

In addition, improvements in sample standardization can improve the ability of researchers around the world to replicate important research results.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BioCision to Develop Controlled-Rate Cell Freezing Systems for Cook Regentec Cell Therapy Vials
BioCision and Cook ink exclusive deal to combine technologies to standardize cell cryopreservation in closed-system vials.
Wednesday, July 29, 2015
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
More Effective Strategy for Producing Flu Vaccines
Researchers have developed a virus backbone, allowing producers to grow vaccine viruses in mammalian cells, rather than in eggs.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Using Cancer Cells' Mass to Predict Treatment Response
A device has been developed that can detect changes in cell mass at a minute scale.
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
Human Intestines and Functioning Nerves Engineered
The new technology enables the study of human health and advances the goal of regenerative medicine.
Chemical Snapshots Could Lead to Better Engineered Cartilage
Taking "chemical photographs" of the cartilage between joints and comparing it to engineered versions could lead to better implants, say researchers.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!