Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ZEISS Acquires Xradia

Published: Friday, July 19, 2013
Last Updated: Friday, July 19, 2013
Bookmark and Share
X-ray microscopy solutions close the gap between light and electron microscopy.

The closing took place on July 12, 2013 after all formal conditions, as set in the Acquisition Agreement, were fulfilled. Xradia, Inc. is now operating under the new name of Carl Zeiss X-ray Microscopy, Inc. This acquisition further strengthens the position of the ZEISS Microscopy business group, the only manufacturer of light, electron and X-ray microscopes, with unique solutions for research and routine inspection in materials and life sciences application fields.

X-ray microscopes show unique capabilities in materials research, allowing for 3D imaging of the internal structure of materials. Spatial resolution down to 50 nanometers can be achieved on a laboratory-based system. The non-destructive nature of X-ray imaging enables the observation and quantification of microstructural evolution in the same region of a single sample over time, or under changing environmental conditions. Several examples of in situ and 4D (three-dimensional imaging over time) experiments are proving beneficial for research and industry, including crack propagation in ceramics and metals, porosity and permeability characterization of geological and functional materials, failure analysis of structural materials, biomechanical systems under load, and the evolution of defects in operating lithium ion batteries and fuel cells.

X-ray microscopes close the resolution gap between light and electron microscopy and offer scientists multiple new imaging modalities to complement their research. The unique optical design allows the ZEISS Xradia Ultra and Versa series to cover a large resolution range, enabling the user to easily find the region of interest by zooming into larger samples (Scout-and-Zoom). ZEISS is working towards integrated workflow solutions for life sciences and materials research. In materials science, this is typically achieved by using X-ray microscopes to perform non-destructive 4D microstructural evolution experiments prior to destructive sectioning and then using electron microscope techniques for additional resolution and contrast. In life sciences, X-ray microscopes are being used to provide a navigational map of the subsurface after tissue samples have been stained for electron microscope investigation. By incorporating 3D X-ray microscopes into this workflow, the emerging 3D electron microscope techniques will gain a significant boost in efficiency.

While maintaining close customer relationships and continuing with current projects, ZEISS is leveraging its vast sales force to make the X-ray technology more accessible in a broader range of applications and workflows. Customers will also benefit from direct service capabilities at multiple locations globally.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bessel Beam Plane Illumination Microscopy Enables Fast 3D Volume Imaging
ZEISS and the Janelia Research Campus sign an exclusive license agreement for commercialization.
Tuesday, September 16, 2014
Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!