Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3D Tissue Grown from Stem Cells - New Model System for Brain Development

Published: Monday, September 02, 2013
Last Updated: Monday, September 02, 2013
Bookmark and Share
An international team of researchers has used stem cells to create a 3D structure that mimics early human brain development.

The group showed that these “cerebral organoids” can be used as a model system to analyse the origins of the human genetic disorder microcephaly, in which brain size is significantly reduced.
The research, led by Juergen Knoblich at the Institute of Molecular Biotechnology, Austria, in collaboration with scientists at the Medical Research Council (MRC) Human Genetics Unit at the University of Edinburgh, provides a unique new laboratory tool for studying human-specific features of brain development and neurological disorders in a way that has not been possible using animal models.

To create the brain tissue, the researchers developed a finely-tuned culture system that capitalises on stem cells’ innate ability to organise themselves into complex organ structures.

They began with human embryonic and induced pluripotent stem cells, which they used to produce neuroectoderm – the layer of cells in the embryo from which all components of the brain and nervous system develop. Fragments of this tissue were then embedded in gel droplets that provided a scaffold for complex tissue growth and placed into a spinning bioreactor. The circulation of culture media in the bioreactor improves oxygen and nutrient supply allowing the organoids to grow to a larger size.

After a month, the tissue fragments had organised themselves into primitive structures that could be recognised as developing brain regions such as retina, choroid plexus and cerebral cortex. At the microscopic level in the cortex, radial glial stem cells, pivotal in developing the central nervous system, were seen to generate neurons in an identical manner to that known to occur in normal development. At two months, the organoids had reached their maximum size of 4mm, but they lacked the more detailed organisational structure of a fully developed brain.

Using patient induced pluripotent stem cells, the researchers were able to model the development of microcephaly, a disorder that has proved difficult to reproduce in mice. As expected, the organoids created using these cells grew to a smaller size.
 
On further investigation, they found that genetic mutations in these patients results in an earlier than normal switch in neural stem cells from self-renewal (making copies of themselves) to differentiation into nerve cells, leading to an overall reduction in cell number and size of the organoid.

Dr Andrew Jackson from the MRC Human Genetics Unit at the University of Edinburgh, a medical geneticist who studies neurological disorders and a co-author of the paper, said:

“The human brain is one of the most complex biological structures known to man. This level of complexity isn’t present in model animals such as mice, and so the organoid cell culture system gives us an exciting new way of studying the early events of brain development in tissue culture to learn more about neurodevelopmental disorders such as microcephaly.

“Our colleagues in Austria have made an amazing achievement in developing a 3D culture system that gives us a means of realistically modelling the complex interaction of multiple cell types in early human brain development. Being able to generate tissue with such complexity in cell culture is a significant advance for the study of human disease in the lab.”

Dr Paul Colville Nash, MRC Programme Manager in stem cell and developmental biology, said:

“This is a fascinating piece of research that demonstrates the remarkable potential of using stem cells to develop model systems in order to give us new insights into human development and disease. Model systems like these are likely to become increasingly important for early testing of new therapies before they progress to human trials.”

The research was led by Dr Jeurgen Knoblich at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences and Dr Madeline A Lancaster was first author of the study. Dr Jackson’s team provided microcephaly patient cells and expertise on microcephaly disorders to the study.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Protein That Turns Moles Into Melanoma Cancer Identified
Moles can turn into cancer, if the genetic factors recently identified by a team of researchers at the University of Pennsylvania were not present in humans.
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Study Details Powerful Molecular Promoter of Colon Cancers
Findings show how suppression of microRNA family of molecules leads to intestinal tumors.
From Pluripotency to Totipotency
Studies results provide new elements for the understanding of pluripotency and could increase the efficiency of reprogramming somatic cells to be used for applications in regenerative medicine.
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!