Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Olympus Introduces 40x Silicone Oil Microscope Objective

Published: Friday, September 13, 2013
Last Updated: Friday, September 13, 2013
Bookmark and Share
Offers brighter, high-resolution live cell and time-lapse imaging.

Olympus has introduced a 40x silicone oil microscope objective, its latest innovation in silicone immersion microscope optics.

The new objective fills out the company’s full line of silicone oil optics, which already includes popular 30x and 60x objectives designed for live cell and time-lapse imaging.

Olympus silicone oil objectives can markedly improve optical performance for live cell confocal, widefield fluorescence, multiphoton, differential interference contrast (DIC) and other applications.

Both the new intermediate-magnification UPLSAPO 40x and the existing UPLSAPO 60x objective are designed specifically to work with the Olympus Zero Drift continuous autofocus system for extended time-lapse imaging.

In addition, all three of the objectives are compatible with protocols that use repeat-single-shot autofocus.

In contrast to water immersion objectives, silicone oil optics are useful in long-term imaging experiments where water evaporation is a pervasive issue.

While water immersion lenses are traditionally used to reduce refraction index mismatch, they are not practical for long-term, time-lapse imaging because of moisture loss and low viscosity.

Compared to conventional oil immersion objectives, the new 40x, 1.25 numericalaperture (NA), 0.3mm working distance objective improves resolution and reduces loss of contrast due to spherical aberration.

By reducing the mismatch between the refractive index of the specimen and that of the immersion medium into which the tip of the objective is dipped, silicone oil provides higher resolution and brightness, especially when using the microscope to image into thick samples.

Glycerol immersion optics are another option, but glycerol is sometimes not ideal because it tends to draw moisture from the air, resulting in changes in refractive index over time.

Silicone oil is very stable and does not have any of these issues; in addition, it more closely matches the refractive index (N=1.404) of intracellular components, making the new objective useful for imaging into cells during for long-term, time-lapse experiments.

The silicon objective has a correction collar, so users can correct for the spherical aberration that is present when imaging into a specimen beyond a cover slip.

Image resolution and contrast, along with fluorescence performance, are optimized and maintained by adjusting this collar.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Photo of Water Creature Resembling a Mouse Earns First Prize
At last, a mouse that says ‘Cheese’. A photo of a curious underwater life form that bears a striking resemblance to a cartoon mouse has earned first prize in the 2011 Olympus BioScapes Digital Imaging Competition®.
Friday, November 18, 2011
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Regenerating Diseased Hearts
Researchers from the University of Otago have probed the potential of adult stem cell types to repair diseased hearts.
Using Cancer Cells' Mass to Predict Treatment Response
A device has been developed that can detect changes in cell mass at a minute scale.
Color-Coded Stem Cells
Researchers develop colour-coding tool for tracking live blood stem cells over time.
Human Intestines and Functioning Nerves Engineered
The new technology enables the study of human health and advances the goal of regenerative medicine.
Chemical Snapshots Could Lead to Better Engineered Cartilage
Taking "chemical photographs" of the cartilage between joints and comparing it to engineered versions could lead to better implants, say researchers.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
New Model of Lung Regeneration
Scientists have developed a tissue-engineered model of lung and trachea which contains the different cell types found in the repiratory system.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!