Corporate Banner
Satellite Banner
Cell Culture
Scientific Community
Become a Member | Sign in
Home>News>This Article

CYTOO’s 2D+ and 3D+ Cell Culture Platform at MipTec 2013

Published: Monday, September 23, 2013
Last Updated: Monday, September 23, 2013
Bookmark and Share
CYTOO will present the 2D+ and 3D+ Cell Culture Platforms, opening fresh perspectives for cell based assay development in drug discovery.

2D+ Technology is based on CYTOO’s adhesive micropatterns in 96-well plates which guide cell architecture and behaviour. It addresses a major concern with traditional 2D culture, in which cells spread and move in an uncontrolled manner, introducing a considerable but unnoticed variability in cell function. By defining the 2D topology of cell adhesion, the 2D+ Cell Culture Platform enables fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations. This approach results in control of cell contractility, cell polarity, organelle positioning, and cell division axis.

The 3D+ Cell Culture is the new generation of 3D technologies. It enables short and long-term assays: hundreds of identical structures can be grown in an in vivo-like microenvironment and in microplate format, which facilitates the identification and quantification of even rare phenotypes. Micropatterned acini cultures can quickly and conveniently be created with any epithelial immortalized cell line or primary cells that have the capacity to form polarized acini in a 3D matrix.

The 3D+ Cell Culture is a simple method to screen drugs in a polarized and 3D automation context. It opens new perspectives in oncology, in the understanding of lumen initiation and in the approach of several conditions such as ciliopathies, gene mutations and diabetes.

During MipTec, CYTOO will be Gold Sponsor for the Stem Cells in Biomedicine Scientific Forum, held on September 24. Sébastien Degot, Senior R&D Scientist, will then present the “Phenotypic profiling using probabilistic density maps generated from micropatterned cells”.

During the Thermo Scientific Industrial Symposium, held on September 26, he will also present the “advantages of CYTOO’s 2D+/3D+ Cell Culture Platform for the imaging and analysis of complex cell models: assessment using the Thermo Scientific Cellomics CellInsight”.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Olivier Pasquier Joins CYTOO as Chief Commercial Officer
Olivier Pasquier first graduated from the French University Nice-Sophia Antipolis in molecular biology. He then completed his background with a marketing MBA from ESCP Europe.
Monday, March 18, 2013
Scientific News
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
Tissue-Engineered Colon from Human Cells
A study by scientists at Children’s Hospital Los Angeles has shown that tissue-engineered colon derived from human cells is able to develop the many specialized nerves required for function, mimicking the neuronal population found in native colon.
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Urine Excretion From Stem Cell-Derived Kidneys
Researchers report a strategy for enabling urine excretion from kidneys grown from stem cells.
The Black Box at the Beginning of Life
Kyoto University sheds light on the earliest stages of human germ cell development.
Flu Study, on Hold, Yields New Vaccine Technology
Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison.
3D Spheroid Culture Trends
Three dimensional (3D) cell culture has been an area of increasing interest and relevance across a wide breadth of fields for some time.
The Mending Tissue - Cellular Instructions for Tissue Repair
NUS-led collaborative study identifies universal mechanism that explains how tissue shape regulates physiological processes such as wound healing and embryo development.
Most Complete Human Brain Model to Date is a ‘Brain Changer’
Once licensed, model likely to accelerate study of Alzheimer’s, autism, more.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos